Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470178

RESUMO

For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e. the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group's finding was also one of the milestones in understanding the mechanism of nonvesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondrion-associated multiprotein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule-synthesizing complex.


Assuntos
Fosfoproteínas , Esteroides , Fosfoproteínas/metabolismo , Colesterol/metabolismo , Microambiente Celular
2.
Heliyon ; 9(10): e20769, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867801

RESUMO

Adrenocortical carcinoma (ACC) is a rare and malignant disease, with more than 50 % of patients developing hormone-secreting tumors. These tumors are genetically heterogeneous and potentially lethal, as metastasis is often underway at the time of diagnosis. While chemoresistance can be multifactorial, Acyl CoA synthetase 4 (ACSL4) is known to contribute to the generation of highly aggressive cellular phenotypes, while increased expression and activity of multidrug transporters such as ATP-binding cassette subfamily G member 2 (ABCG2) are known to play a key role. Therefore, the objective of this work was to determine changes in the expression of ACSL4 and ABCG2 in ACC cell lines after exposure to antitumor drugs. Bioinformatics analysis of public database GSE140818 revealed higher ACSL4 and ABCG2 expression in HAC15 cells resistant to mitotane when compared to wild type cells. In addition, our studies revealed an increase in ACSL4 and ABCG2 expression in lowly aggressive H295R cells undergoing early treatment with non-lethal concentrations of mitotane, doxorubicin and cisplatin. Comparable results were obtained in lowly aggressive breast cancer cells MCF-7. The increase in ACSL4 and ABCG2 expression favored tumor cell viability, proliferation and compound efflux, an effect partially offset by ACSL4 and ABCG2 inhibitors. These results provide relevant data on the undesired molecular effects of antitumor drugs and may fuel future studies on patients' early response to antitumor treatment.

3.
Cell Mol Life Sci ; 78(6): 2893-2910, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33068124

RESUMO

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Animais , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esteroides/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 9(1): 10324, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311992

RESUMO

Acyl-CoA synthetase 4 (ACSL4) overexpression plays a causal role in the aggressiveness of triple negative breast cancer. In turn, a negative correlation has been established between ACSL4 and estrogen receptor alpha (ERα) expression. However, the upstream regulatory mechanisms leading to differential ACSL4 expression between triple negative breast cancer and ERα-positive cells remained unknown. We performed the characterization of the human ACSL4 promoter and the identification of transcription factors involved. Deletional analysis demonstrated the proximal 43 base pairs of the promoter are involved in overexpression. By site directed mutagenesis we describe that retinoid-related orphan receptor alpha (RORα), Sp1 and E2F elements are involved in the promoter activity. We established for the first time that estrogen-related receptor alpha (ERRα) is a transcription factor involved in the higher activation of the human ACSL4 promoter in breast cancer cells. Furthermore, a combination of inhibitors of ACSL4 and ERRα produced a synergistic decrease in MDA-MB-231 cell proliferation. We also demonstrated that ERα restoration in triple negative breast cancer cells downregulates ACSL4 expression. The results presented in this manuscript demonstrated transcriptional mechanism is involved in the different expression of ACSL4 in human breast cancer cell lines of different aggressiveness.


Assuntos
Coenzima A Ligases/genética , Regiões Promotoras Genéticas , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima , Linhagem Celular Tumoral , Coenzima A Ligases/metabolismo , Fatores de Transcrição E2F/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mutagênese Sítio-Dirigida , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Transcrição Sp1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Biochem Pharmacol ; 159: 52-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414939

RESUMO

Acyl-CoA synthetase-4 (ACSL4) is an enzyme implicated in estrogen receptor α (ERα) negative regulation and hormone therapy resistance in breast cancer. In addition, ACSL4 has been associated to certain types of hormone resistance in prostate cancer. Chemotherapeutic treatment of disseminated breast cancer is usually faced with therapy resistance associated to ATP-binding cassette (ABC) transporter expression, which detect and eject anti-cancer drugs from cells. In this context, the aim of the present work was to study the role of ACSL4 in anti-cancer drug resistance and the involvement of ABC transporters in the underlying mechanisms. To this end, we used MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, which overexpress ACSL4, and control line MCF-7 Tet-Off empty vector, MDA-MB-231 shRNA ACSL4 and MDA-MB-231 wild type cells. Assays were conducted on cell viability (MTT), cell proliferation (BrdU), drug efflux (flow cytometry), ACSL4-responsive drug resistance ABC transporter genes (RNA-Seq), transporter mRNA expression, protein levels and signaling pathway participation (real-time PCR and Western blot). Higher survival rates upon chemotherapeutic treatment were obtained in MCF-7 Tet-Off/ACSL4 and MDA-MB-231 mock cells, an effect counteracted by doxycycline- or shRNA-induced ACSL4 inhibition, respectively. A synergic effect of ACSL4 inhibitor triacsin C and chemotherapeutic drugs was observed on the inhibition of MDA-MB-231 wild type cell proliferation. MCF-7 Tet-Off/ACSL4 cells showed greater doxorubicin, Hoechst 33342 and calcein AM efflux. In contrast, MDA-MB-231 shRNA ACSL4 cells evidenced inhibition of chemotherapeutic drug efflux. ABCG2, ABCC4, and ABCC8 were identified as ACSL4-responsive drug resistance genes whose expression was increased in MCF-7 Tet-Off/ACSL4 cells but inhibited in MDA-MB-231 shRNA ACSL4 cells. Further cell survival assays in the presence of Ko 143 and Ceefourin 1, inhibitors of ABCG2 and ABCC4, respectively, upon chemotherapeutic treatment showed greater participation of ABCG2 in anti-cancer drug resistance in cells overexpressing ACSL4. In addition, ACSL4 inhibition and chemotherapeutic treatment combined with rapamycin-induced mTOR inhibition synergically inhibited proliferation and reduced ABCG2 expression in cells overexpressing ACSL4. In sum, ACSL4 may be regarded as a novel therapeutic target regulating the expression of transporters involved in anticancer drug resistance through the mTOR pathway to restore drug sensitivity in tumors with poor prognosis for disease-free and overall survival.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Coenzima A Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Coenzima A Ligases/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Triazenos/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-27375556

RESUMO

In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.

7.
Oncotarget ; 6(40): 42632-50, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26536660

RESUMO

Although the role of acyl-CoA synthetase 4 (ACSL4) in mediating an aggressive phenotype is well accepted, there is little evidence as to the early steps through which ACSL4 increases tumor growth and progression. In this study, and by means of the stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system (MCF-7 Tet-Off/ACSL4), we identify the mTOR pathway as one of the main specific signatures of ACSL4 expression and demonstrate the partial involvement of the lipoxygenase pathway in the activation of mTOR. The specificity of ACSL4 action on mTOR signaling is also determined by doxycycline inhibition of ACSL4 expression in MCF-7 Tet-Off/ACSL4 cells, by the expression of ACSL4 in the non-aggressive T47D breast cancer cell line and by knocking down this enzyme expression in the MDA-MB-231 breast cancer cells, which constitutively express ACSL4. ACSL4 regulates components of the two complexes of the mTOR pathway (mTORC1/2), along with upstream regulators and substrates.We show that mTOR inhibitor rapamycin and ACSL4 inhibitor rosiglitazone can act in combination to inhibit cell growth. In addition, we demonstrate a synergistic effect on cell growth inhibition by the combination of rosiglitazone and tamoxifen, an estrogen receptor α (ERα) inhibitor. Remarkably, this synergistic effect is also evident in the triple negative MDA-MB-231 cells in vitro and in vivo.These results suggest that ACSL4 could be a target to restore tumor hormone dependence in tumors with poor prognosis for disease-free and overall survival, in which no effective specifically targeted therapy is readily available.


Assuntos
Neoplasias da Mama/metabolismo , Coenzima A Ligases/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transfecção
8.
Int J Oncol ; 46(6): 2335-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25846632

RESUMO

Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 µg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥ 300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Desamino Arginina Vasopressina/análogos & derivados , Receptores de Vasopressinas/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desamino Arginina Vasopressina/administração & dosagem , Desamino Arginina Vasopressina/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cell Endocrinol ; 408: 73-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540920

RESUMO

The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroidogenesis, i.e. the delivery of cholesterol from the outer (OMM) to the inner (IMM) mitochondrial membrane. StAR is a 37-kDa protein with an N-terminal mitochondrial targeting sequence that is cleaved off during mitochondrial import to yield 30-kDa intramitochondrial StAR. StAR acts exclusively on the OMM and its activity is proportional to how long it remains on the OMM. However, the precise fashion and the molecular mechanism in which StAR remains on the OMM have not been elucidated yet. In this work we will discuss the role of mitochondrial fusion and StAR phosphorylation by the extracellular signal-regulated kinases 1/2 (ERK1/2) as part of the mechanism that regulates StAR retention on the OMM and activity.


Assuntos
Dinâmica Mitocondrial , Fosfoproteínas/metabolismo , Esteroides/biossíntese , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Fosforilação
10.
Mol Cell Endocrinol ; 369(1-2): 15-26, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23376217

RESUMO

Acyl-CoA synthetase 4 (Acsl4) is involved in several cellular functions including steroidogenesis, synaptic development and cancer metastasis. Although the expression of Acsl4 seems to be regulated by tissue- and cell-specific factors as well as pituitary hormones and growth factors, the transcriptional mechanisms involved remain unknown. We demonstrated hCG and cAMP regulation of Acsl4 mRNA in mouse steroidogenic MA-10 Leydig cells. We characterized the transcription initiation site and promoter of the Acsl4 mouse gene and identified three alternative splice variants present in MA-10 cells. Sequence analysis of a 1.5-kb fragment of the Acsl4 promoter revealed the absence of a TATA box and the presence of many putative binding sites for transcription factors including Sp1 and CREB. Functional characterization revealed that the specificity protein/Krüppel-like factor Sp1 binding site in the proximal promoter is involved in basal activity and that the cAMP response element-binding site is involved in cAMP stimulation of Acsl4 transcription.


Assuntos
Coenzima A Ligases/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Transcrição Sp1/metabolismo , Processamento Alternativo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Gonadotropina Coriônica/farmacologia , Clonagem Molecular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , AMP Cíclico/farmacologia , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos
11.
Mol Cell Endocrinol ; 371(1-2): 26-33, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23357790

RESUMO

The mitochondria are critical for steroidogenesis since the ability of cholesterol to move into mitochondria to be available for cytochrome P450, CYP11A1, determines the efficacy of steroid production. Several proteins kinases, such as PKA, MEK and ERK which are essential to complete steroidogenesis, form a mitochondria-associated complex. The protein-protein interactions between kinases and key factors during the transport of cholesterol takes place in the contact sites between the two mitochondrial membranes; however, no mitochondrial targeting sequence has been described for these kinases. Here we discuss the possibility that mitochondrial reorganization may be mediating a compartmentalized cellular response. This reorganization could allow the physical interaction between the hormone-receptor complex and the enzymatic and lipidic machinery necessary for the complete steroid synthesis and release. The movement of organelles in specialized cells could impact on biological processes that include, but are not limited to, steroid synthesis.


Assuntos
Colesterol/metabolismo , Mitocôndrias/metabolismo , Esteroides/biossíntese , Esteroides/metabolismo , Transporte Biológico , Comunicação Celular , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos
12.
PLoS One ; 7(7): e40794, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808264

RESUMO

The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of proliferation as well as metastatic potential of cancer cells.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Coenzima A Ligases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Terapia de Alvo Molecular , Análise de Variância , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Injeções Intraperitoneais , Células MCF-7 , Camundongos , Receptores de Progesterona/metabolismo , Tetraciclina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Lipid Res ; 52(11): 1936-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21903867

RESUMO

Acyl-CoA synthetase 4 (ACSL4) is implicated in fatty acid metabolism with marked preference for arachidonic acid (AA). ACSL4 plays crucial roles in physiological functions such as steroid synthesis and in pathological processes such as tumorigenesis. However, factors regulating ACSL4 mRNA and/or protein levels are not fully described. Because ACSL4 protein expression requires tyrosine phosphatase activity, in this study we aimed to identify the tyrosine phosphatase involved in ACSL4 expression. NSC87877, a specific inhibitor of the tyrosine phosphatase SHP2, reduced ACSL4 protein levels in ACSL4-rich breast cancer cells and steroidogenic cells. Indeed, overexpression of an active form of SHP2 increased ACSL4 protein levels in MA-10 Leydig steroidogenic cells. SHP2 has to be activated through a cAMP-dependent pathway to exert its effect on ACSL4. The effects could be specifically attributed to SHP2 because knockdown of the phosphatase reduced ACSL4 mRNA and protein levels. Through the action on ACSL4 protein levels, SHP2 affected AA-CoA production and metabolism and, finally, the steroidogenic capacity of MA-10 cells: overexpression (or knockdown) of SHP2 led to increased (or decreased) steroid production. We describe for the first time the involvement of SHP2 activity in the regulation of the expression of the fatty acid-metabolizing enzyme ACSL4.


Assuntos
Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Ácido Araquidônico/biossíntese , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Fosfoproteínas/genética , Plasmídeos/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Quinolinas/farmacologia , Interferência de RNA , Ratos , Esteroides/biossíntese
14.
Mol Cell Endocrinol ; 336(1-2): 63-9, 2011 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145937

RESUMO

The phospho-dephosphorylation of intermediate proteins is a key event in the regulation of steroid biosynthesis. In this regard, it is well accepted that steroidogenic hormones act through the activation of serine/threonine (Ser/Thr) protein kinases. Although many cellular processes can be regulated by a crosstalk between different kinases and phosphatases, the relationship of Ser/Thr phosphorylation and tyrosine (Tyr)-dephosphorylation is a recently explored field in the regulation of steroid synthesis. Indeed in steroidogenic cells, one of the targets of hormone-induced Ser/Thr phosphorylation is a protein tyrosine phosphatase. Whereas protein tyrosine phosphatases were initially regarded as household enzymes with constitutive activity, dephosphorylating all the substrates they encountered, evidence is now accumulating that protein tyrosine phosphatases are tightly regulated by various mechanisms. Here, we will describe the role of protein tyrosine phosphatases in the regulation of steroid biosynthesis, relating them to steroidogenic acute regulatory protein, arachidonic acid metabolism and mitochondrial rearrangement.


Assuntos
Colesterol/metabolismo , Fosfoproteínas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Transporte Biológico , Hormônios/metabolismo , Humanos , Especificidade por Substrato
15.
PLoS One ; 5(11): e15540, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085606

RESUMO

The acyl-CoA synthetase 4 (ACSL4) is increased in breast cancer, colon and hepatocellular carcinoma. ACSL4 mainly esterifies arachidonic acid (AA) into arachidonoyl-CoA, reducing free AA intracellular levels, which is in contradiction with the need for AA metabolites in tumorigenesis. Therefore, the causal role of ACSL4 is still not established. This study was undertaken to determine the role of ACSL4 in AA metabolic pathway in breast cancer cells. The first novel finding is that ACSL4 regulates the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin in MDA-MB-231 cells. We also found that ACSL4 is significantly up-regulated in the highly aggressive MDA-MB-231 breast cancer cells. In terms of its overexpression and inhibition, ACSL4 plays a causal role in the control of the aggressive phenotype. These results were confirmed by the increase in the aggressive behaviour of MCF-7 cells stably transfected with a Tet-off ACSL4 vector. Concomitantly, another significant finding was that intramitochondrial AA levels are significantly higher in the aggressive cells. Thus, the esterification of AA by ACSL4 compartmentalizes the release of AA in mitochondria, a mechanism that serves to drive the specific lipooxygenase metabolization of the fatty acid. To our knowledge, this is the first report that ACSL4 expression controls both lipooxygenase and cyclooxygenase metabolism of AA. Thus, this functional interaction represents an integrated system that regulates the proliferating and metastatic potential of cancer cells. Therefore, the development of combinatory therapies that profit from the ACSL4, lipooxygenase and COX-2 synergistic action may allow for lower medication doses and avoidance of side effects.


Assuntos
Coenzima A Ligases/genética , Ciclo-Oxigenase 2/genética , Perfilação da Expressão Gênica , Lipoxigenases/genética , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Coenzima A Ligases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lipoxigenases/metabolismo , Mitocôndrias/metabolismo , Prostaglandinas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Int Immunol ; 20(4): 461-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18195050

RESUMO

Trypanosoma cruzi, the agent of Chagas disease contains a major cysteine proteinase, cruzipain (Cz), with an unusual carboxyl-terminal extension (C-T). We have previously reported the presence of sulfate groups in the N-linked oligosaccharide chains of this domain. In order to evaluate the immune responses to sulfated moieties on Cz, BALB/c mice were immunized with purified Cz and C-T prior and after desulfation treatment. The humoral immune response to sulfates on Cz or C-T was mainly IgG2b. Interestingly, the abolishment of IgG2b reactivity when desulfated antigens were used as immunogens demonstrates that esterified sulfate groups are absolutely required for eliciting IgG2b response to Cz. Sera from chronically T. cruzi-infected subjects with mild disease displayed higher levels of total IgG and IgG2 antibodies specific for sulfated epitopes compared with those in more severe forms of the disease. A significant reduction of C-T-specific delayed-type hypersensitivity reaction in C-T-immunized mice was observed when desulfated C-T was challenged, suggesting the involvement of sulfate groups in the generation of memory T-cell responses. Moreover, immunization with C-T in the absence of infection elicited ultrastructural abnormalities in heart tissue. Surprisingly, hearts from sulfate-depleted C-T-immunized mice did not present pathological alterations. This is the first report showing that sulfate-bearing glycoproteins from trypanosomatids are able to elicit specific humoral and cellular immune responses and appeared to be involved in the generation of heart tissue damage. These results represent a further step in the understanding of the role of Cz in the course of T. cruzi infection.


Assuntos
Doença de Chagas/imunologia , Cisteína Endopeptidases/imunologia , Cardiopatias/imunologia , Imunoglobulina G/sangue , Sulfatos/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/sangue , Doença Crônica , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Modelos Animais de Doenças , Feminino , Cardiopatias/patologia , Humanos , Hipersensibilidade Tardia/imunologia , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/imunologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Fragmentos de Peptídeos/imunologia , Estrutura Terciária de Proteína , Proteínas de Protozoários , Reprodutibilidade dos Testes , Testes Sorológicos , Trypanosoma cruzi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...