Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 42: 578-86, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063156

RESUMO

Phase composition, crystal structure and morphology of carbonated fluor/hydroxyapatite synthesized hydrothermally from aragonitic cuttlefish bones were studied by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The product of synthesis has been characterized as carbonated fluor/hydroxyapatite with carbonate incorporated inside channel (A-type) and substituted for the PO4(3-) group (B-type). The vibration band at 874 cm(-1) assigned to bending (ν2) mode undoubtedly confirmed carbonate substituted for PO4(3-) group, while the band at 880 cm(-1) was attributed to A-type carbonate substitution. The additional sharp and intense band at 865 cm(-1) considered as "non-apatitic" carbonate substitution is not assigned with certainty so far. Evolution of CO2 from tetrahedral (PO4(3-)) sites with the increase in heat-treatment temperature is evident by the changes in tetrahedral bond lengths and angles, as obtained by the Rietveld structure refinement. Also, changes in the isotropic temperature parameters for the 2a site point to A-type carbonate incorporation as well.


Assuntos
Osso e Ossos/química , Carbonatos/química , Decapodiformes/química , Hidroxiapatitas/química , Alicerces Teciduais/química , Animais , Temperatura Alta , Teste de Materiais , Microscopia Eletrônica de Varredura , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA