Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(5): 4474-4482, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802485

RESUMO

Semiconductor colloidal nanoplatelets based of CdSe have excellent optical properties. Their magneto-optical and spin-dependent properties can be greatly modified by implementing magnetic Mn2+ ions, using concepts well established for diluted magnetic semiconductors. A variety of magnetic resonance techniques based on high-frequency (94 GHz) electron paramagnetic resonance in continuous wave and pulsed mode were used to get detailed information on the spin structure and spin dynamics of Mn2+ ions in core/shell CdSe/(Cd,Mn)S nanoplatelets. We observed two sets of resonances assigned to the Mn2+ ions inside the shell and at the nanoplatelet surface. The surface Mn demonstrates a considerably longer spin dynamics than the inner Mn due to lower amount of surrounding Mn2+ ions. The interaction between surface Mn2+ ions and 1H nuclei belonging to oleic acid ligands is measured by means of electron nuclear double resonance. This allowed us to estimate the distances between the Mn2+ ions and 1H nuclei, which equal to 0.31 ± 0.04, 0.44 ± 0.09, and more than 0.53 nm. This study shows that the Mn2+ ions can serve as atomic-size probes for studying the ligand attachment to the nanoplatelet surface.

2.
Nano Lett ; 22(7): 2718-2724, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357842

RESUMO

Coherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the VB- spin with a characteristic decay time Tcoh = 15 µs, close to the theoretically predicted limit of 18 µs for defects in hBN. Elongation of the coherence time up to 36 µs is demonstrated by means of the Carr-Purcell-Meiboom-Gill decoupling technique. Modulation of the Hahn-echo decay is shown to be induced by coherent coupling of the VB- spin with the three nearest 14N nuclei via a nuclear quadrupole interaction of 2.11 MHz. DFT calculation confirms that the electron-nuclear coupling is confined to the defective layer and stays almost unchanged with a transition from the bulk to the single layer.

3.
ACS Omega ; 6(39): 25338-25349, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632192

RESUMO

Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li+, Na+, Mn2+, Cu2+, Fe3+, and Ba2+). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors. We show that revealed in CaPs by EPR techniques, radiation-induced stable nitrogen-containing species and carbonate radicals can serve as sensitive paramagnetic probes to follow CaPs' structural changes caused by cation doping. The most pulsed EPR, ESEEM, and EDNMR spectra can be detected at room temperature, reducing the costs of the measurements and facilitating the usage of pulsed EPR techniques for CaP characterization.

4.
Nanomaterials (Basel) ; 11(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067260

RESUMO

Optically addressable high-spin states (S ≥ 1) of defects in semiconductors are the basis for the development of solid-state quantum technologies. Recently, one such defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB-). To explore and utilize the properties of this defect, one needs to design a robust way for its creation in an hBN crystal. We investigate the possibility of creating VB- centers in an hBN single crystal by means of irradiation with a high-energy (E = 2 MeV) electron flux. Optical excitation of the irradiated sample induces fluorescence in the near-infrared range together with the electron spin resonance (ESR) spectrum of the triplet centers with a zero-field splitting value of D = 3.6 GHz, manifesting an optically induced population inversion of the ground state spin sublevels. These observations are the signatures of the VB- centers and demonstrate that electron irradiation can be reliably used to create these centers in hBN. Exploration of the VB- spin resonance line shape allowed us to establish the source of the line broadening, which occurs due to the slight deviation in orientation of the two-dimensional B-N atomic plains being exactly parallel relative to each other. The results of the analysis of the broadening mechanism can be used for the crystalline quality control of the 2D materials, using the VB- spin embedded in the hBN as a probe.

5.
Nat Mater ; 19(5): 540-545, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32094496

RESUMO

Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy ([Formula: see text]), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state-a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

6.
J Phys Chem B ; 123(43): 9143-9154, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31593457

RESUMO

Nanopowders of aluminum-substituted (0-20 mol %) hydroxyapatite (HA) with the average size of 40-60 nm were synthesized by the precipitation method from nitrate solutions. A series of samples were studied by various analytical tools to elucidate the peculiarities of Al introduction. Electron paramagnetic resonance and pulsed electron-nuclear double resonance data demonstrate that incorporation of Al resulted in a decrease in the concentration of impurity carbonate anions and lead to an increase in the number of protons in the distant environment of the impurity nitrogen species. Density functional theory calculations show that the Al3+ incorporation is accompanied by the local positional rearrangement and the distortion of anion channel geometry. An in vitro test conducted on MG-63 cells demonstrates the cytocompatibility and magnification of the surface matrix characteristics with Al doping.

7.
ACS Biomater Sci Eng ; 5(12): 6632-6644, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33423482

RESUMO

Succeeding in the substitution of pharmaceutical compounds with ions deliverable with the use of resorbable biomaterials could have far-reaching benefits for medicine and economy. Calcium phosphates are known as excellent accommodators of foreign ions. Manganese, the fifth most abundant metal on Earth was studied here as an ionic dopant in ß-tricalcium phosphate (ß-TCP) ceramics. ß-TCP containing different amounts of Mn2+ ions per MnxCa3-x(PO4)2 formula (x = 0, 0.001, 0.01, and 0.1) was investigated for a range of physicochemical and biological properties. The results suggested the role of Mn2+ as a structure booster, not breaker. Mn2+ ions increased the size of coherent X-ray scattering regions averaged across all crystallographic directions and also lowered the temperature of transformation of the hydroxyapatite precursor to ß-TCP. The particle size increased fivefold, from 20 to 100 nm, in the 650-750 °C region, indicating that the reaction of formation of ß-TCP was accompanied by a considerable degree of grain growth. The splitting of the antisymmetric stretching mode of the phosphate tetrahedron occurred proportionally to the Mn2+ content in the material, while electron paramagnetic resonance spectra suggested that Mn2+ might substitute for three out of five possible calcium ion positions in the unit cell of ß-TCP. The biological effects of Mn-free ß-TCP and Mn-doped ß-TCP were selective: moderately proliferative to mammalian cells, moderately inhibitory to bacteria, and insignificant to fungi. Unlike pure ß-TCP, ß-TCP doped with the highest concentration of Mn2+ ions significantly inhibited the growth of all bacterial species tested: Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The overall effect against the Gram-positive bacteria was more intense than against the Gram-negative microorganisms. Meanwhile, ß-TCP alone had an augmentative effect of the viability of adipose-derived mesenchymal stem cells (ADMSCs) and the addition of Mn2+ tended to reduce the extent of this augmentative effect, but without imparting any toxicity. For all Mn-doped ß-TCP concentrations except the highest, the cell viability after 72 h incubation was significantly higher than that of the negative control. Assays evaluating the effect of Mn2+-containing ß-TCP formulations on the differentiation of ADMSCs into three different lineages-osteogenic, adipogenic, and chondrogenic-demonstrated no inhibitory or adverse effects compared to pure ß-TCP and powder-free positive controls. Still, ß-TCP delivering the lowest amount of Mn2+ seemed most effective in sustaining the differentiation process toward all three phenotypes, indicating that the dose of Mn2+ in ß-TCP need not be excessive to be effective.

8.
Phys Chem Chem Phys ; 20(43): 27697-27699, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351324

RESUMO

Shames et al. made a comment on our article (DOI: 10.1039/C7CP05898E) stating that their experience in EPR studies of detonation nanodiamonds suggests the existence of two main types of paramagnetic center in detonation nanodiamonds which questions our results. In this reply we provide insights into why there is only one main type of paramagnetic centers detected in nanodiamonds used in this work, which validates the correctness of the proposed original method to determine the distances between paramagnetic centers and nanoparticle surfaces by 3He NMR.

9.
Phys Chem Chem Phys ; 20(3): 1476-1484, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29260164

RESUMO

In this article a method to assess the location of paramagnetic centers in nanodiamonds was proposed. The nuclear magnetic relaxation of adsorbed 3He used as a probe in this method was studied at temperatures of 1.5-4.2 K and magnetic fields of 100-600 mT. A strong influence of the paramagnetic centers of the sample on the 3He nuclear spin relaxation time T1 was found. Preplating the nanodiamond surface with adsorbed nitrogen layers allowed us to vary the distance from 3He nuclei to paramagnetic centers in a controlled way and to determine their location using a simple model. The observed T1 minima in temperature dependences are well described within the frame of the suggested model and consistent with the concentration of paramagnetic centers determined by electron paramagnetic resonance. The average distance found from the paramagnetic centers to the nanodiamond surface (0.5 ± 0.1 nm) confirms the well-known statement that paramagnetic centers in this type of nanodiamond are located in the carbon shell. The proposed method can be applied to detailed studies of nano-materials at low temperatures.

10.
Biomed Res Int ; 2016: 3706280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28078287

RESUMO

The search for adequate markers of atherosclerotic plaque (AP) instability in the context of assessment of the ischemic stroke risk in patients with atherosclerosis of the carotid arteries as well as for solid physical and chemical factors that are connected with the AP stability is extremely important. We investigate the inner lining of the carotid artery specimens from the male patients with atherosclerosis (27 patients, 42-64 years old) obtained during carotid endarterectomy by using different analytical tools including ultrasound angiography, X-ray analysis, immunological, histochemical analyses, and high-field (3.4 T) pulse electron paramagnetic resonance (EPR) at 94 GHz. No correlation between the stable and unstable APs in the sense of the calcification is revealed. In all of the investigated samples, the EPR spectra of manganese, namely, Mn2+ ions, are registered. Spectral and relaxation characteristics of Mn2+ ions are close to those obtained for the synthetic (nano) hydroxyapatite species but differ from each other for stable and unstable APs. This demonstrates that AP stability could be specified by the molecular organization of their hydroxyapatite components. The origin of the obtained differences and the possibility of using EPR of Mn2+ as an AP stability marker are discussed.


Assuntos
Aterosclerose/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Manganês/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Adulto , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Aterosclerose/cirurgia , Artérias Carótidas/metabolismo , Artérias Carótidas/cirurgia , Durapatita/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Endarterectomia das Carótidas , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/fisiopatologia , Placa Aterosclerótica/cirurgia
11.
Phys Chem Chem Phys ; 17(31): 20331-7, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26190281

RESUMO

The interplay of oppositely charged substitutions in the structure of hydroxyapatite (HAp) nanopowders is investigated on the atomic level by pulsed electron paramagnetic resonance (EPR) technique and ab initio density functional theory calculations. Benefits of EPR to determine Mn(2+) ions in nano-HAp samples are demonstrated. A simple approach based on the measurements of electron spin relaxation times allowed observing the strong influence of fast-relaxing Mn(2+) ions on the relaxation characteristics of the nitrate ions (NO3(-)/NO3(2-)) incorporated in trace amounts. Based on the results of ab initio calculations, we show the propensity of Mn(2+) and NO3(-)/NO3(2-) to associate within the HAp crystal lattice. This could have a direct impact on the functional properties of the material especially to resorption and ion exchange. Furthermore, such an effect can increase a propensity of undesired impurities to incorporate into the doped nanocrystals.


Assuntos
Durapatita/química , Manganês/química , Nanopartículas/química , Nitratos/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular
12.
J Phys Chem A ; 118(8): 1519-26, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24512217

RESUMO

We demonstrate the application of the combined experimental-computational approach for studying the anionic impurities in hydroxyapatite (HAp). Influence of the carbonation level (x) on the concentration of the NO3(2-) radicals in the HAp nanocrystals of Ca10-xNax(PO4)6-x(CO3)x(OH)2 with x in the range 0 < x < 2 and average sizes of 30 nm is investigated by different analytical methods including electron paramagnetic resonance (EPR). Stable NO3(2-) radicals are formed under X-ray irradiation of nano-HAp samples from NO3(-) ions incorporated in trace amounts during the wet synthesis process. Density functional theory (DFT) based calculations show energetic preference for the PO4 group substitution by NO3(-) ions. Comparison of the calculated and experimental spectroscopic parameters (g and hyperfine tensors) reveals that EPR detects the NO3(2-) radicals located in the positions of the PO4 group only. It is shown that with the increase in x, the carbonate ions substitute the NO3(2-)/NO3(-) ions. DFT calculations confirm that carbonate incorporation in HAp structure is energetically more favorable than the formation of the nitrate defect.


Assuntos
Carbonatos/química , Durapatita/química , Nanopartículas/química , Nitratos/química , Óxidos de Nitrogênio/química , Durapatita/efeitos da radiação , Radicais Livres/química , Nanopartículas/efeitos da radiação , Teoria Quântica , Termodinâmica , Raios X
14.
Appl Magn Reson ; 39(1-2): 151-183, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20936163

RESUMO

It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast to optical methods, they allow the identification of the dopants and provide information about the spatial distribution of the electronic wave function. This latter aspect is particularly attractive because it allows for a quantitative measurement of the effect of confinement on the shape and properties of the wave function. In this contribution EPR and ENDOR results are presented on doped ZnO QDs. Shallow donors (SDs), related to interstitial Li and Na and substitutional Al atoms, have been identified in this material by pulsed high-frequency EPR and ENDOR spectroscopy. The shallow character of the wave function of the donors is evidenced by the multitude of ENDOR transitions of the (67)Zn nuclear spins and by the hyperfine interaction of the (7)Li, (23)Na and (27)Al nuclear spins that are much smaller than for atomic lithium, sodium and aluminium. The EPR signal of an exchange-coupled pair consisting of a shallow donor and a deep Na-related acceptor has been identified in ZnO nanocrystals with radii smaller than 1.5 nm. From ENDOR experiments it is concluded that the deep Na-related acceptor is located at the interface of the ZnO core and the Zn(OH)(2) capping layer, while the shallow donor is in the ZnO core. The spatial distribution of the electronic wave function of a shallow donor in ZnO semiconductor QDs has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine interactions as monitored by ENDOR spectroscopy quantitatively reveal the transition from semiconductor to molecular properties upon reduction of the size of the nanoparticles. In addition, the effect of confinement on the g-factor of SDs in ZnO as well as in CdS QDs is observed. Finally, it is shown that an almost complete dynamic nuclear polarization (DNP) of the (67)Zn nuclear spins in the core of ZnO QDs and of the (1)H nuclear spins in the Zn(OH)(2) capping layer can be obtained. This DNP is achieved by saturating the EPR transition of SDs present in the QDs with resonant high-frequency microwaves at low temperatures. This nuclear polarization manifests itself as a hole and an antihole in the EPR absorption line of the SD in the QDs and a shift of the hole (antihole). The enhancement of the nuclear polarization opens the possibility to study semiconductor nanostructures with nuclear magnetic resonance techniques.

15.
Phys Rev Lett ; 100(25): 256404, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643684

RESUMO

Theoretical predictions about the n-type conductivity in nitride semiconductors are discussed in the light of results of a high-frequency EPR an ENDOR study. It is shown that two types of effective-mass-like, shallow donors with a delocalized wave function exist in unintentionally doped AlN. The experiments demonstrate how the transformation from a shallow donor to a deep (DX) center takes place and how the deep DX center can be reconverted into a shallow donor forming a spin triplet and singlet states.

16.
Phys Rev Lett ; 88(4): 045504, 2002 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-11801137

RESUMO

Electron paramagnetic resonance and Hall measurements show consistently the presence of two donors ( D1 and D2) in state-of-the-art, nominally undoped ZnO single crystals. Using electron nuclear double resonance it is found that D1 shows hyperfine interaction with more than 50 shells of surrounding 67Zn nuclei, proving that it is a shallow, effective-mass-like donor. In addition D1 exhibits a single interaction with a H nucleus ( a(H) = 1.4 MHz), thus H is the defining element. It is in agreement with the prediction of Van de Walle [Phys. Rev. Lett. 85, 1012 (2000)] that H acts as a donor in ZnO. The concentration of D1 is 6x10(16) cm(-3) emphasizing its relevance for carrier statistics and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...