Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902961

RESUMO

Heterogeneous superconductivity onset is a common phenomenon in high-Tc superconductors of both the cuprate and iron-based families. It is manifested by a fairly wide transition from the metallic to zero-resistance states. Usually, in these strongly anisotropic materials, superconductivity (SC) first appears as isolated domains. This leads to anisotropic excess conductivity above Tc, and the transport measurements provide valuable information about the SC domain structure deep within the sample. In bulk samples, this anisotropic SC onset gives an approximate average shape of SC grains, while in thin samples, it also indicates the average size of SC grains. In this work, both interlayer and intralayer resistivity were measured as a function of temperature in FeSe samples of various thicknesses. To measure the interlayer resistivity, FeSe mesa structures oriented across the layers were fabricated using FIB. As the sample thickness decreases, a significant increase in superconducting transition temperature Tc is observed: Tc raises from 8 K in bulk material to 12 K in microbridges of thickness ∼40 nm. We applied analytical and numerical calculations to analyze these and earlier data and find the aspect ratio and size of the SC domains in FeSe consistent with our resistivity and diamagnetic response measurements. We propose a simple and fairly accurate method for estimating the aspect ratio of SC domains from Tc anisotropy in samples of various small thicknesses. The relationship between nematic and superconducting domains in FeSe is discussed. We also generalize the analytical formulas for conductivity in heterogeneous anisotropic superconductors to the case of elongated SC domains of two perpendicular orientations with equal volume fractions, corresponding to the nematic domain structure in various Fe-based superconductors.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407225

RESUMO

Recently, Ti-Ni based intermetallic alloys with shape memory effect (SME) have attracted much attention as promising functional materials for the development of record small nanomechanical tools, such as nanotweezers, for 3D manipulation of the real nano-objects. The problem of the fundamental restrictions on the minimal size of the nanomechanical device with SME for manipulation is connected with size effects which are observed in small samples of Ti-Ni based intermetallic alloys with thermoplastic structural phase transition from austenitic high symmetrical phase to low symmetrical martensitic phase. In the present work, by combining density functional theory and molecular dynamics modelling, austenite has been shown to be more stable than martensite in nanometer-sized TiNi wafers. In this case, the temperature of the martensitic transition asymptotically decreases with a decrease in the plate thickness h, and the complete suppression of the phase transition occurs for a plate with a thickness of 2 nm, which is in qualitative agreement with the experimental data. Moreover, the theoretical values obtained indicate the potential for even greater minimization of nanomechanical devices based on SME in TiNi.

3.
Nanotechnology ; 32(49)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34438379

RESUMO

Nanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS3, a quasi one-dimensional compound with room-temperature charge density wave (CDW). The nanowhiskers were separated without damage from the growth batch, an entangled array, and safely transferred to a substrate with a preliminary deposited Au film. The contacts were fabricated with Pt sputtering on top of the whisker and the film. The high degree of synchronization of the sliding CDW under a RF field with a frequency up to 600 MHz confirms the high quality of the contacts and of the sample structure after the manipulations. The proposed technique paves the way to novel type micro- and nanostructures fabrication and their various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...