Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope ; 133(10): 2695-2703, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36734335

RESUMO

OBJECTIVE: Swallowing is a complex neuromuscular task. There is limited spatiotemporal data on normative surface electromyographic signal during swallow, particularly across standard textures. We hypothesize the pattern of electromyographic signal of the anterior neck varies cranio-caudally, that laterality can be evaluated, and categorization of bolus texture can be differentiated by high-density surface electromyography (HDsEMG) through signal analysis. METHODS: An HDsEMG grid of 20 electrodes captured electromyographic activity in eight healthy adult subjects across 240 total swallows. Participants swallowed five standard textures: saliva, thin liquid, puree, mixed consistency, and dry solid. Data were bandpass filtered, underwent functional alignment of signal, and then placed into binary classifier receiver operating characteristic (ROC) curves. Muscular activity was visualized by creating two-dimensional EMG heat maps. RESULTS: Signal analysis results demonstrated a positive correlation between signal amplitude and bolus texture. Greater differences of amplitude in the cranial most region of the array when compared to the caudal most region were noted in all subjects. Lateral comparison of the array revealed symmetric power levels across all subjects and textures. ROC curves demonstrated the ability to correctly classify textures within subjects in 6 of 10 texture comparisons. CONCLUSION: This pilot study suggests that utilizing HDsEMG during deglutition can noninvasively differentiate swallows of varying texture noninvasively. This may prove useful in future diagnostic and behavioral swallow applications. LEVEL OF EVIDENCE: 4 Laryngoscope, 133:2695-2703, 2023.


Assuntos
Transtornos de Deglutição , Deglutição , Adulto , Humanos , Projetos Piloto , Eletromiografia/métodos , Eletrodos
2.
Adv Mater ; 33(10): e2008076, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527567

RESUMO

A giant barocaloric effect (BCE) in a molecular material Fe3 (bntrz)6 (tcnset)6 (FBT) is reported, where bntrz = 4-(benzyl)-1,2,4-triazole and tcnset = 1,1,3,3-tetracyano-2-thioethylepropenide. The crystal structure of FBT contains a trinuclear transition metal complex that undergoes an abrupt spin-state switching between the state in which all three FeII centers are in the high-spin (S = 2) electronic configuration and the state in which all of them are in the low-spin (S = 0) configuration. Despite the strongly cooperative nature of the spin transition, it proceeds with a negligible hysteresis and a large volumetric change, suggesting that FBT should be a good candidate for producing a large BCE. Powder X-ray diffraction and calorimetry reveal that the material is highly susceptible to applied pressure, as the transition temperature spans the range from 318 at ambient pressure to 383 K at 2.6 kbar. Despite the large shift in the spin-transition temperature, its nonhysteretic character is maintained under applied pressure. Such behavior leads to a remarkably large and reversible BCE, characterized by an isothermal entropy change of 120 J kg-1 K-1 and an adiabatic temperature change of 35 K, which are among the highest reversible values reported for any caloric material thus far.

3.
Laryngoscope ; 129(10): 2347-2353, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30663053

RESUMO

OBJECTIVES/HYPOTHESIS: Laryngeal muscle activation is a complex and dynamic process. Current evaluation methods include needle and surface electromyography (sEMG). Limitations of needle electromyography include patient discomfort, interpretive complexity, and limited duration of recording. sEMG demonstrates interpretive challenges given loss of spatial selectivity. Application of high-density sEMG (HD sEMG) arrays were evaluated for potential to compensate for spatial selectivity loss while retaining benefits of noninvasive monitoring. STUDY DESIGN: Basic science. METHODS: Ten adults performed phonatory tasks while a 20-channel array recorded spatiotemporal data of the anterior neck. Data were processed to provide average spectral power of each electrode. Comparison was made between rest, low-, and high-pitch phonation. Two-dimensional (2D) spectral energy maps were created to evaluate use in gross identification of muscle location. RESULTS: Three phonatory tasks yielded spectral power measures across the HD sEMG array. Each electrode within the array demonstrated unique power values across all subjects (P < .001). Comparison of each electrode to itself across phonatory tasks yielded differences in all subjects during rest versus low versus high, rest versus low, and rest versus high and in 9/10 subjects (P < .001) for low versus high phonation. Symmetry of HD sEMG signal was noted. Review of 2D coronal energy maps allowed for gross identification of cricothyroid muscle amidst anterior strap musculature. CONCLUSIONS: HD sEMG can be used to identify differences in anterior neck muscle activity between rest, low-, and high-pitch phonation. HD sEMG of the anterior neck holds potential to enhance diagnostic and therapeutic monitoring for pathologies of laryngeal function. LEVEL OF EVIDENCE: NA Laryngoscope, 129:2347-2353, 2019.


Assuntos
Eletromiografia/métodos , Músculos Laríngeos/diagnóstico por imagem , Adulto , Eletrodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fonação , Processamento de Sinais Assistido por Computador , Adulto Jovem
4.
Sensors (Basel) ; 15(9): 23459-76, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26389915

RESUMO

New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach.


Assuntos
Adesivos/química , Técnicas Biossensoriais/instrumentação , Eletrônica/instrumentação , Microtecnologia/métodos , Elasticidade , Desenho de Equipamento , Vidro , Maleabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...