Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Stress ; 30: 100634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623398

RESUMO

Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and individual differences in response to stress suggest resilient and susceptible populations. Using animal models to target neurobiological mechanisms associated with individual variability in stress coping responses and the relationship with subsequent increases in alcohol consumption has important implications for the field of traumatic stress and alcohol disorders. The current review discusses the unique advantages of utilizing predator odor stressor exposure models, specifically using 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) on better understanding PTSD pathophysiology and neurobiological mechanisms associated with stress reactivity and subsequent increases in alcohol drinking. Furthermore, there has been increasing interest regarding the role of the endocannabinoid system in modulating behavioral responses to stress with an emphasis on stress coping and individual differences in stress-susceptibility. Therefore, the current review focuses on the topic of endocannabinoid modulation of stress reactive behaviors during and after exposure to a predator odor stressor, with implications on modulating distinctly different behavioral coping strategies.

2.
Neurotoxicol Teratol ; 102: 107341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490565

RESUMO

Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.


Assuntos
Canabinoides , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Feminino , Masculino , Animais , Gravidez , Corticosterona , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Etanol/farmacologia , Sacarose
3.
Curr Protoc ; 4(1): e967, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193654

RESUMO

Animal models utilizing predator odor stress are important in understanding implications for post-traumatic stress disorder. 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) has been used to measure stress reactive behaviors during TMT exposure, indicative of stress coping behaviors. In addition, long-term consequences of stress including contextual-induced stress memory, anxiety-like and hyperarousal behaviors, and subsequent increases in alcohol self-administration can also be examined after TMT exposure. In this article, we describe the TMT exposure protocol used in our lab and how we measure different stress-reactive behaviors that rats engage in during the TMT exposure. Rats are placed in Plexiglass chambers that contain white bedding on the bottom of the chamber and a metal basket in the top right corner containing a filter paper that 10 µl of TMT is pipetted onto. During the 10 min exposure, rats can move around the chamber freely. Exposures are recorded by a video camera for later analysis. During TMT exposure, rats engage in a variety of stress-reactive behaviors, including digging and immobility behavior. These are two distinctly different types of stress-induced behavioral coping strategies to measure individual differences in stress responsivity. To examine individual differences, we group rats into TMT-subgroups based on time spent engaging in digging or immobility behavior. We calculate a digging/immobility ratio score in which we divide the total time spent digging by the total time spent immobile. A cut-off strategy is used such that rats with a criterion ratio score <1.0 are classified as TMT-1 (i.e., low digging/high immobility; greater passive coping) and rats with a ratio score >1.0 are classified as TMT-2 (i.e., high digging/low immobility; greater active coping). Here, we provide a detailed description of the TMT exposure protocol and step-by-step process in evaluation of stress-reactive behaviors. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Predator odor stressor exposure using TMT Basic Protocol 2: Description of stress-reactive behaviors during TMT exposure and formation of TMT-subgroups.


Assuntos
Capacidades de Enfrentamento , Odorantes , Animais , Ratos , Modelos Animais , Ansiedade
4.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873078

RESUMO

Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.

5.
Alcohol Clin Exp Res (Hoboken) ; 47(3): 459-469, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587947

RESUMO

BACKGROUND: Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS: In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS: Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS: Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.


Assuntos
Neuroesteroides , Núcleo Accumbens , Humanos , Ratos , Masculino , Feminino , Animais , Núcleo Accumbens/metabolismo , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Etanol , Encéfalo , Pregnanolona/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Alcohol ; 104: 1-11, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150613

RESUMO

Post-traumatic stress disorder (PTSD) confers enhanced vulnerability to developing comorbid alcohol use disorder (AUD). Exposure to the scent of a predator, such as the fox odor TMT, has been used to model a traumatic stressor with relevance to PTSD symptomatology. Alcohol produces distinct interoceptive (subjective) effects that may influence vulnerability to problem drinking and AUD. As such, understanding the lasting impact of stressors on sensitivity to the interoceptive effects of alcohol is clinically relevant. The present study used a 2-lever, operant drug discrimination procedure to train male Long-Evans rats to discriminate the interoceptive effects of alcohol (2 g/kg, i.g. [intragastrically]) from water. Upon stable performance, rats underwent a 15-min exposure to TMT. Two weeks later, an alcohol dose-response curve was conducted to evaluate the lasting effects of the TMT stressor on the interoceptive effects of alcohol. The TMT group showed a leftward shift in the effective dose (ED50) of the dose-response curve compared to controls, reflecting potentiated interoceptive sensitivity to alcohol. TMT exposure did not affect response rate. GABAergic signaling in both the anterior insular cortex (aIC) and the nucleus accumbens (Acb) is involved in the interoceptive effects of alcohol and stressor-induced adaptations. As such, follow-up experiments in alcohol-naïve rats examined neuronal activation (as measured by c-Fos immunoreactivity) following TMT and showed that TMT exposure increased c-Fos expression in the aIC and the nucleus accumbens core (AcbC). Two weeks after TMT exposure, Gad-1 gene expression was elevated in the aIC and Gat-1 was increased in the Acb, compared to controls. Lastly, the alcohol discrimination and alcohol-naïve groups displayed dramatic differences in stress reactive behaviors during the TMT exposure, suggesting that alcohol exposure may alter the behavioral response to predator odor. Together, these data suggest that predator odor stressor results in potentiated sensitivity to alcohol, possibly through GABAergic adaptations in the aIC and Acb, which may be relevant to understanding PTSD-AUD comorbidity.


Assuntos
Núcleo Accumbens , Odorantes , Animais , Ratos , Masculino , Núcleo Accumbens/metabolismo , Ratos Long-Evans , Córtex Insular , Etanol/farmacologia , Etanol/metabolismo , Expressão Gênica
7.
Psychopharmacology (Berl) ; 238(12): 3411-3421, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390359

RESUMO

RATIONALE: Experiencing intrusive distressing memories of a traumatic event(s) is a prominent symptom profile for post-traumatic stress disorder (PTSD). Understanding the neurobiological mechanisms associated with this symptom profile can be invaluable for effective treatment for PTSD. OBJECTIVES: Here, we investigated the functional role of the nucleus reuniens (RE), a midline thalamic in modulating stressor-related memory. METHODS: Female Long Evans rats were implanted with a cannula aimed at the RE. The RE was pharmacologically inactivated via muscimol (0.5 mM) prior to exposure to the predator odor stressor trimethylthiazoline (TMT; synthetically derived fox feces component) or water (controls) in a distinct context with bedding material (experiment 1) or no bedding (experiment 2). To measure context reactivity, the index of the contextual memory, 2 weeks following exposure to TMT, rats were re-exposed to the TMT-paired context (in the absence of TMT). RESULTS: In experiment 1, during context re-exposure (with bedding), inactivation of the RE had no effect on context reactivity. In experiment 2, during context re-exposure (no bedding), rats previously exposed to TMT showed decreased immobility compared to controls, indicating reactivity to the context and likely related to theincreased exploration of the environment. Rats in the TMT group that received RE inactivation showed increased immobility relative to rats that received aCSF, suggesting that muscimol pre-treatment blunted context reactivity. CONCLUSION: In conclusion, recruitment of the RE in stressor-related contextual memory appears to be dependent on the contextual environment and whether the animal is able to engage in different stress coping strategies.


Assuntos
Núcleos da Linha Média do Tálamo , Transtornos de Estresse Pós-Traumáticos , Animais , Feminino , Muscimol/farmacologia , Odorantes , Ratos , Ratos Long-Evans
8.
Behav Brain Res ; 402: 113068, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33333108

RESUMO

Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid. Additionally, individual differences in response to stress suggest resilient and susceptible populations. The current study exposed male and female Long Evans rats to the synthetically produced predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) to examine individual differences in stress-reactive behaviors (digging and immobility) and whether these differences were related to subsequent alcohol drinking. Male and female Long Evans rats were trained on operant alcohol self-administration. After 9 sessions, rats underwent exposure to TMT or water (Control) in a distinct context. 6 days after TMT exposure, rats underwent re-exposure to the TMT-paired context (without TMT), and a series of behavioral assessments (acoustic startle, zero maze, light/dark box), after which rats resumed alcohol self-administration. TMT subgroups were created using a ratio of digging to immobility behavior during TMT exposure and rats with a ratio score < 1.0 or> 1.0 were grouped into TMT-1 (low digging/high immobility) or TMT-2 (high digging/low immobility), respectively. All male rats exposed to TMT met criteria for TMT-1, while female rats were divided into the two subgroups. In females, high digging/low immobility behavior during TMT exposure (TMT-2) was related to increased alcohol self-administration, but this was not observed in males or females that engaged in low digging/high immobility (TMT-1). These data show that individual differences in stress-reactivity can lead to lasting behavioral changes which may lead to a better understanding of increases in alcohol drinking following stress in females.


Assuntos
Adaptação Psicológica/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/fisiopatologia , Comportamento Animal/fisiologia , Individualidade , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Odorantes , Ratos , Ratos Long-Evans , Tiazóis
9.
Genes Brain Behav ; 19(8): e12684, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32666635

RESUMO

Persistent changes in brain stress and glutamatergic function are associated with post-traumatic stress disorder (PTSD). Rodent exposure to the predator odor trimethylthiazoline (TMT) is an innate stressor that produces lasting behavioral consequences relevant to PTSD. As such, the goal of the present study was to assess early (6 hours and 2 days-Experiment 1) and late (4 weeks-Experiment 2) changes to gene expression (RT-PCR) related to stress and excitatory function following TMT exposure in male, Long-Evans rats. During TMT exposure, rats engaged in stress reactive behaviors, including digging and immobility. Further, the TMT group displayed enhanced exploration and mobility in the TMT-paired context 1 week after exposure, suggesting a lasting contextual reactivity. Gene expression analyses revealed upregulated FKBP5 6 hours post-TMT in the hypothalamus and dorsal hippocampus. Two days after TMT, GRM3 was downregulated in the prelimbic cortex and dorsal hippocampus, but upregulated in the nucleus accumbens. This may reflect an early stress response (FKBP5) that resulted in later glutamatergic adaptation (GRM3). Finally, another experiment 4 weeks after TMT exposure showed several differentially expressed genes known to mediate excitatory tripartite synaptic function in the prelimbic cortex (GRM5, DLG4 and SLC1A3 upregulated), infralimbic cortex (GRM2 downregulated, Homer1 upregulated), nucleus accumbens (GRM7 and SLC1A3 downregulated), dorsal hippocampus (FKBP5 and NR3C2 upregulated, SHANK3 downregulated) and ventral hippocampus (CNR1, GRM7, GRM5, SHANK3 and Homer1 downregulated). These data show that TMT exposure induces stress and excitatory molecular adaptations, which could help us understand the persistent glutamatergic dysfunction observed in PTSD.


Assuntos
Encéfalo/metabolismo , Estresse Psicológico/genética , Animais , Encéfalo/fisiologia , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Comportamento Predatório , Ratos , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Tiazóis/toxicidade
10.
Front Cell Neurosci ; 12: 219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108486

RESUMO

Females are more likely to develop post-traumatic stress disorder (PTSD) than males. Also, symptoms of PTSD frequently precede alcohol abuse in females. Stressful, threat-related stimuli are evaluated by the amygdala, which is critical for establishing the emotional salience of environmental stimuli. Ethanol and stress have been shown to modify amygdala excitability, but effects of acute ethanol on neurons of the basolateral amygdala (BLA) in both males and females exposed to stress is unknown. The purpose of this study is to determine stress-induced changes in membrane properties of BLA neurons and to determine how ethanol modulates these changes in male and female rats. Whole-cell recordings were obtained from BLA neurons of both male and female rats exposed to single-prolonged stress (SPS). Neuronal excitability, quantified as the number of action potentials, was determined in current clamp mode by applying a series of depolarizing current steps. Hyperpolarization-activated current (Ih) was elicited in voltage clamp. Excitability and Ih amplitude were determined before and during the superfusion of ethanol (EtOH; 30 mM) in BLA neurons from SPS-treated male and female rats. SPS alone did not alter the firing properties of BLA neurons from either males or females. However, following SPS, BLA neurons from males and females respond differently to ethanol. Superfusion of EtOH (30 mM) inhibited spike firing in BLA neurons from rats exposed to SPS, and EtOH-induced inhibition was greater in females than in males exposed to stress. Also, EtOH (30 mM) selectively decreased Ih amplitude in BLA neurons from SPS-treated male rats from 171 ± 46 pA in (pre-EtOH) control to 53 ± 51 pA in the presence of EtOH (30 mM). EtOH did not reduce Ih in BLA neurons from SPS-treated females. Together, these suggest important sex differences in the physiological responses to EtOH in stress disorders such as PTSD, that have high comorbidity with alcohol use disorders.

11.
Alcohol Clin Exp Res ; 40(7): 1462-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27218698

RESUMO

BACKGROUND: Research suggests symptoms of chronic alcoholism, and withdrawal may be more severe in elderly compared with younger adults. However, examination of the effects of long-term ethanol (EtOH) consumption and withdrawal is limited in aged rodents. We thus investigated EtOH withdrawal and potential deficits in cognitive and motor behavior in young adult and aged rats. We also examined the effects of acute allopregnanolone as a potential mechanism contributing to age-related differences in EtOH's cognitive-impairing effects. METHODS: Male young adult (postnatal days 70 to 72) and aged (approximately 18 months) Sprague-Dawley rats were treated with liquid EtOH diet in a modified chronic intermittent EtOH (modified-CIE) paradigm. The severity of EtOH withdrawal was determined using a 4-item rating scale, and withdrawal-induced anxiety-like behavior was assessed in the elevated plus maze (EPM) and open field. After a 14-day EtOH-free period, spatial performance was assessed in the Morris water maze (MWM) during sober acquisition and in response to a subsequent EtOH and allopregnanolone challenge. RESULTS: Modified-CIE adults consumed more EtOH during treatment and exhibited robust EtOH withdrawal using a behavioral rating scale compared to aged rats. In the EPM, adult and aged modified-CIE groups spent increased time in the closed arms, while aged animals also made significantly more closed arm entries, fewer open arm entries, and spent less time in the open arms during withdrawal compared to controls. Modified-CIE decreased MWM performance of adult and aged rats, but did not result in motor impairments in either age group. Finally, acute allopregnanolone increased time to the MWM platform in adults but not aged animals. CONCLUSIONS: The elderly may be vulnerable to EtOH withdrawal as modified-CIE aged rats displayed anxiety-like behavior compared to controls during withdrawal despite achieving lower blood EtOH concentrations during treatment than younger adults. Our data also indicate that modified-CIE and EtOH withdrawal cause persistent cognitive impairments in both age groups. The results from this study provide further evidence indicating the elderly may be sensitive to the effects of alcohol.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Etanol/administração & dosagem , Etanol/efeitos adversos , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Animais , Masculino , Pregnanolona/farmacologia , Ratos , Síndrome de Abstinência a Substâncias/fisiopatologia
12.
Alcohol ; 49(2): 121-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613215

RESUMO

Acute alcohol exposure has been shown to produce differential motor impairments between aged and adult rats and between adolescent and adult rats. However, the effects of acute alcohol exposure among adolescent, adult, and aged rats have yet to be systematically investigated within the same project using a dose-dependent analysis. We sought to determine the age- and dose-dependent effects of acute alcohol exposure on gross and coordinated motor performance across the rodent lifespan. Adolescent (PD 30), adult (PD 70), and aged (approximately 18 months) male Sprague-Dawley rats were tested on 3 separate motor tasks: aerial righting reflex (ARR), accelerating rotarod (RR), and loss of righting reflex (LORR). In a separate group of animals, blood ethanol concentrations (BEC) were determined at multiple time points following a 3.0 g/kg ethanol injection. Behavioral tests were conducted with a Latin square repeated-measures design in which all animals received the following doses: 1.0 g/kg or 2.0 g/kg alcohol or saline over 3 separate sessions via intraperitoneal (i.p.) injection. During testing, motor impairments were assessed on the RR 10 min post-injection and on ARR 20 min post-injection. Aged animals spent significantly less time on the RR when administered 1.0 g/kg alcohol compared to adult rats. In addition, motor performance impairments significantly increased with age after 2.0 g/kg alcohol administration. On the ARR test, aged rats were more sensitive to the effects of 1.0 g/kg and 2.0 g/kg alcohol compared to adolescents and adults. Seven days after the last testing session, animals were given 3.0 g/kg alcohol and LORR was examined. During LORR, aged animals slept longer compared to adult and adolescent rats. This effect cannot be explained solely by BEC levels in aged rats. The present study suggests that acute alcohol exposure produces greater motor impairments in older rats when compared to adolescent and adult rats and begins to establish a procedure to determine motor effects by alcohol across the lifespan.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/administração & dosagem , Etanol/toxicidade , Desempenho Psicomotor/efeitos dos fármacos , Reflexo de Endireitamento/efeitos dos fármacos , Fatores Etários , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/fisiologia
13.
Pharmacol Biochem Behav ; 103(4): 701-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23268346

RESUMO

The present study was designed to investigate the long-term effects of repeated methamphetamine (MA) exposure on sexual motivation in female rats tested after a period of drug abstinence. In Experiment 1, female subjects received three injections of MA (1.0mg/kg/day, every other day) or saline and were tested for paced mating behavior (where females could control the receipt of sexual stimulation from one male rat) 21 days after their last injection. In Experiment 2, female subjects received 12 consecutive injections of MA (1.0mg/kg/day) or saline and were tested for mate choice (where females could control the receipt of sexual stimulation from two male rats simultaneously) 6 days after their last injection. Experiment 3 was identical to Experiment 2 except that female subjects received no baseline mating test and were tested for mate choice 24h and 6 days after their last injection. Open field tests were conducted in each experiment to measure locomotor activity after repeated exposure to MA. Although repeated MA exposure increased locomotor activity, mating behavior was not facilitated after either a short (6 days) or long (21 days) period of drug abstinence. Nevertheless, sexual behavior was disrupted during the 24h acute withdrawal period. Therefore, although the present study found no evidence of cross-sensitization between female sexual behavior and MA after either a short or a long period of drug abstinence, sexual behavior in sexually naïve female rats is sensitive to the depressive state associated with acute withdrawal from MA. In conclusion, the results of the present study suggest that MA acts differently from other psychomotor stimulants, and that the effects of MA withdrawal on sexual behavior differ between male and female rats.


Assuntos
Metanfetamina/administração & dosagem , Caracteres Sexuais , Comportamento Sexual Animal/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Animais , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Ratos , Ratos Long-Evans , Comportamento Sexual Animal/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...