Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(22): 4397-4416, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252986

RESUMO

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.


Assuntos
Evolução Biológica , Cavernas , Characidae/genética , Fluxo Gênico , Genética Populacional , Animais , México , Modelos Genéticos , Fenótipo , Filogenia , Locos de Características Quantitativas
2.
J Morphol ; 275(7): 721-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24470053

RESUMO

Phenotypic variation is important for evolutionary processes because it can allow local adaptation, promote genetic segregation, and ultimately give rise to speciation. Lacustrine systems provide a unique opportunity to study the mechanisms by which sister species can co-occur by means of ecological segregation. The fish genus Astyanax is characterized by high levels of phenotypic variability, providing an excellent model for the study of local specialization. Here, we analyze the morphological specializations through geometric morphometrics of two sympatric species described as different genera: Bramocharax caballeroi endemic to Lake Catemaco, and the widely distributed Astyanax aeneus. Additionally, we assess the correlation between phenotypic and genetic structure, and the phylogenetic signal of morphological variation. We examined body size and shape variation in 196 individuals and analyzed mitochondrial cytochrome b sequences in 298 individuals. Our results confirm the striking morphological divergence among the sympatric characids. Differences between them were mainly found in the body depth and profile and orientation of the head, where B. caballeroi in contrast with the A. aeneus, presented a fusiform body and an upward mouth. Moreover, different growth trajectories were observed among morphotypes, suggesting that a heterochronic process could be involved in the diversification of our study system. Morphological differences did not correspond with the molecular differentiation, suggesting high levels of homoplasy among the lineages of B. caballeroi morphs.


Assuntos
Characidae/anatomia & histologia , Animais , Sequência de Bases , Evolução Biológica , Tamanho Corporal , Characidae/classificação , Characidae/genética , Citocromos b/genética , Proteínas de Peixes/genética , Variação Genética , Haplótipos , Lagos , México , Tipagem Molecular , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...