Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 27555, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271799

RESUMO

The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Locomoção/genética , Animais , Comportamento Animal/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/genética , Cocaína/farmacologia , Drosophila/genética , Drosophila/fisiologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Orientação/efeitos dos fármacos , Orientação/fisiologia
2.
Nucleic Acids Res ; 42(15): 9761-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25106867

RESUMO

The COP9 signalosome protein complex has a central role in the regulation of development of multicellular organisms. While the function of this complex in ubiquitin-mediated protein degradation is well established, results over the past few years have hinted that the COP9 signalosome may function more broadly in the regulation of gene expression. Here, using DamID technology, we show that COP9 signalosome subunit 7 functionally associates with a large number of genomic loci in the Drosophila genome, and show that the expression of many genes within these loci is COP9 signalosome-dependent. This association is likely direct as we show CSN7 binds DNA in vitro. The genes targeted by CSN7 are preferentially enriched for transcriptionally active regions of the genome, and are involved in the regulation of distinct gene ontology groupings including imaginal disc development and cell-cycle control. In accord, loss of CSN7 function leads to cell-cycle delay and altered wing development. These results indicate that CSN7, and by extension the entire COP9 signalosome, functions directly in transcriptional control. While the COP9 signalosome protein complex has long been known to regulate protein degradation, here we expand the role of this complex by showing that subunit 7 binds DNA in vitro and functions directly in vivo in transcriptional control of developmentally important pathways that are relevant for human health.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Complexo do Signalossomo COP9 , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/fisiologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Loci Gênicos , Genoma de Inseto , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento
3.
PLoS One ; 8(10): e76257, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146845

RESUMO

In this study we characterize the coordination between the direction a fruit-fly walks and the direction it faces, as well as offer a methodology for isolating and validating key variables with which we phenotype fly locomotor behavior. Our fundamental finding is that the angular interval between the direction a fly walks and the direction it faces is actively managed in intact animals and modulated in a patterned way with drugs. This interval is small in intact flies, larger with alcohol and much larger with cocaine. The dynamics of this interval generates six coordinative modes that flow smoothly into each other. Under alcohol and much more so under cocaine, straight path modes dwindle and modes involving rotation proliferate. To obtain these results we perform high content analysis of video-tracked open field locomotor behavior. Presently there is a gap between the quality of descriptions of insect behaviors that unfold in circumscribed situations, and descriptions that unfold in extended time and space. While the first describe the coordination between low-level kinematic variables, the second quantify cumulative measures and subjectively defined behavior patterns. Here we reduce this gap by phenotyping extended locomotor behavior in terms of the coordination between low-level kinematic variables, which we quantify, combining into a single field two disparate fields, that of high content phenotyping and that of locomotor coordination. This will allow the study of the genes/brain/locomotor coordination interface in genetically engineered and pharmacologically manipulated animal models of human diseases.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Drosophila melanogaster/fisiologia , Etanol/farmacologia , Atividade Motora/efeitos dos fármacos , Orientação/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Cocaína/administração & dosagem , Drosophila melanogaster/efeitos dos fármacos , Etanol/administração & dosagem , Humanos , Rotação
4.
Phys Biol ; 9(4): 045002, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22871593

RESUMO

Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.


Assuntos
Blastocisto/citologia , Embrião de Mamíferos/embriologia , Camadas Germinativas/embriologia , Animais , Blastocisto/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Camundongos , Transdução de Sinais
5.
Cell Stem Cell ; 10(4): 440-54, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482508

RESUMO

Nanog, Oct4, and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated, the mechanistic functions are not well defined. Here, we identify general and cell-line-specific requirements for NANOG, OCT4, and SOX2 in hESCs. We show that OCT4 regulates, and interacts with, the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus, instead of being panrepressors of differentiation, each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Ectoderma/citologia , Ectoderma/embriologia , Células-Tronco Embrionárias/citologia , Humanos , Camundongos , Proteína Homeobox Nanog
6.
Mol Syst Biol ; 3: 108, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17486136

RESUMO

The COP9 signalosome (CSN), an eight-subunit protein complex, is conserved in all higher eukaryotes. CSN intersects the ubiquitin-proteasome pathway, modulating signaling pathways controlling various aspects of development. We are using Drosophila as a model system to elucidate the function of this important complex. Transcriptome data were generated for four csn mutants, sampled at three developmental time points. Our results are highly reproducible, being confirmed using two different experimental setups that entail different microarrays and different controls. Our results indicate that the CSN acts as a transcriptional repressor during development of Drosophila, resulting in achronic gene expression in the csn mutants. 'Time shift' analysis with the publicly available Drosophila transcriptome data indicates that genes repressed by the CSN are normally induced primarily during late embryogenesis or during metamorphosis. These temporal shifts are likely due to the roles of the CSN in regulating transcription factors. A null mutation in CSN subunit 4 and hypomorphic mutations in csn5 lead to more severe defects than seen in the csn5-null mutants strain, suggesting that CSN5 carries only some of the CSN function.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Complexos Multiproteicos/fisiologia , Peptídeo Hidrolases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Complexo do Signalossomo COP9 , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ecdisona/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva , Masculino , Complexos Multiproteicos/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeo Hidrolases/genética , Subunidades Proteicas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnica de Subtração , Fatores de Tempo , Transcrição Gênica
7.
Genes Cells ; 12(2): 183-95, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17295838

RESUMO

The COP9 signalosome is a multifunctional regulator essential for Drosophila development. A loss-of-function mutant in Drosophila COP9 signalosome subunit 5 (CSN5) develops melanotic bodies, a phenotype common to mutants in immune signaling. csn5(null) larvae accumulated high levels of Cactus that co-localizes with Dorsal to the nucleus. However, Dorsal-dependent transcriptional activity remained repressed in the absence of an inducing signal, despite its nuclear localization. Dorsal activity in mutant larvae and NFkappaB activity in CSN5 down-regulated mammalian cells can be induced following activation of the Toll/IL-1 pathway. csn5(null) larvae contained more hemocytes than wild-type (wt) larvae. A large portion of these cells have differentiated to lamellocytes (LM), a hemocyte cell type rarely seen in normal larvae. The results presented here indicate that CSN5 is a negative regulator of Dorsal subcellular localization, and of hemocyte proliferation and differentiation. These results further indicate that nuclear localization of Dorsal can be uncoupled from its activation. Surprisingly, CSN5 is not necessary for immune-induced degradation of Cactus.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/imunologia , Hematopoese/fisiologia , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/fisiologia , Peptídeo Hidrolases/fisiologia , Fosfoproteínas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Complexo do Signalossomo COP9 , Imuno-Histoquímica , Microscopia Confocal , Microscopia de Fluorescência
8.
Development ; 129(19): 4399-409, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223399

RESUMO

The COP9 signalosome (CSN) is an essential eight-subunit repressor of light-regulated development in Arabidopsis. This complex has also been identified in animals, though its developmental role remains obscure. CSN subunits have been implicated in various cellular processes, suggesting a possible role for the CSN as an integrator of multiple signaling pathways. In order to elucidate the function of the CSN in animals, a Drosophila model system has previously been established. Gel-filtration analysis with antibodies against CSN subunits 4, 5 and 7 revealed that these proteins act as a complex in Drosophila that is similar in size to the plant and mammalian complexes. Null mutations in either one of two subunits, CSN4 or CSN5, are larval lethal. Successful embryogenesis appears to be a consequence of maternal contribution of the complex. Biochemical analysis indicates that the different subunits are found in both CSN-dependent and CSN-independent forms, and that these forms are differentially affected by the mutations. Phenotypic characterization of these two mutants indicates that they show both shared and unique phenotypes, which suggest specific roles for each subunit. Both mutants have defective oocyte and embryo patterning, and defects in response to DNA damage, while csn5 mutants develop melanotic tumors and csn4 mutants have phenotypes reminiscent of defects in ecdysone signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Padronização Corporal , Complexo do Signalossomo COP9 , Polaridade Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva , Metanossulfonato de Metila/farmacologia , Complexos Multiproteicos , Mutagênese , Oócitos , Oogênese , Peptídeo Hidrolases , Fenótipo , Proteínas/genética , Proteínas Repressoras/genética
9.
Neuron ; 33(1): 35-46, 2002 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11779478

RESUMO

Different classes of photoreceptor neurons (R cells) in the Drosophila compound eye form connections in different optic ganglia. The R1-R6 subclass connects to the first optic ganglion, the lamina, and relies upon glial cells as intermediate targets. Conversely, R cells promote glial cell development including migration of glial cells into the target region. Here, we show that the JAB1/CSN5 subunit of the COP9 signalosome complex is expressed in R cells, accumulates in the developing optic lobe neuropil, and through the analysis of a unique set of missense mutations, is required in R cells to induce lamina glial cell migration. In these CSN5 alleles, R1-R6 targeting is disrupted. Genetic analysis of protein null alleles further revealed that the COP9 signalosome is required at an earlier stage of development for R cell differentiation.


Assuntos
Proteínas de Ligação a DNA/deficiência , Drosophila melanogaster/metabolismo , Indução Embrionária/genética , Neuroglia/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Fatores de Transcrição/deficiência , Vias Visuais/metabolismo , Alelos , Animais , Padronização Corporal/genética , Complexo do Signalossomo COP9 , Comunicação Celular/genética , Diferenciação Celular/genética , Divisão Celular/genética , Movimento Celular/genética , Quimiotaxia/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genótipo , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mosaicismo/genética , Complexos Multiproteicos , Mutação de Sentido Incorreto/fisiologia , Neuroglia/citologia , Neurópilo/citologia , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/embriologia , Peptídeo Hidrolases , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas/genética , Proteínas/metabolismo , Fatores de Transcrição/genética , Vias Visuais/citologia , Vias Visuais/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA