Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 112: 108133, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38968780

RESUMO

Nipah virus (NiV) remains a significant global concern due to its impact on both the agricultural industry and human health, resulting in substantial economic and health consequences. Currently, there is no cure or commercially available vaccine for the virus. Therefore, it is crucial to prioritize the discovery of new and effective treatment options to prevent its continued spread. Streptomyces spp. are rich sources of metabolites known for their bioactivity against certain diseases; however, their potential as antiviral drugs against the Nipah virus remain unexplored. In this study, 6524 Streptomyces spp. metabolites were screened through in silico methods for their inhibitory effects against the Nipah virus matrix (NiV-M) protein, which assists in virion assembly of Nipah virus. Different computer-aided tools were utilized to carry out the virtual screening process: ADMET profiling revealed 913 compounds with excellent safety and efficacy profiles, molecular docking predicted the binding poses and associated docking scores of the ligands in their respective targets, MD simulations confirmed the binding stability of the top ten highest-scoring ligands in a 100 ns all-atom simulation, PCA elucidated simulation convergence, and MMPB(GB)SA calculations estimated the binding energies of the final candidate compounds and determined the key residues crucial for complex formation. Using in silico methods, we identified six metabolites targeting the main substrate-binding site and five targeting the dimerization site that exhibited excellent stability and strong binding affinity. We recommend testing these compounds in the next stages of drug development to confirm their effectiveness as therapeutic agents against Nipah virus.

2.
Open Vet J ; 14(5): 1224-1242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38938443

RESUMO

Background: Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), is associated with high mortality and morbidity rates, especially in neonatal pigs. This has resulted in significant economic losses for the pig industry. PEDV genotype II-based vaccines were found to confer better immunity against both heterologous and homologous challenges; specifically, spike (S) proteins, which are known to play a significant role during infection, are ideal for vaccine development. Aim: This study aims to design a multi-epitope subunit vaccine targeting the S protein of the PEDV GIIa strain using an immunoinformatics approach. Methods: Various bioinformatics tools were used to predict HTL, CTL, and B-cell epitopes. The epitopes were connected using appropriate linkers and conjugated with the CTB adjuvant and M-ligand. The final multiepitope vaccine construct (fMEVc) was then docked to toll-like receptor 4 (TLR4). The stability of the fMEVc-TLR4 complex was then simulated using GROMACS. C-immsim was then used to predict the in vitro immune response of the fMEVc. Results: Six epitopes were predicted to induce antibody production, ten epitopes were predicted to induce CTL responses, and four epitopes were predicted to induce HTL responses. The assembled epitopes conjugated with the CTB adjuvant and M-ligand, fMEVc, is antigenic, non-allergenic, stable, and soluble. The construct showed a favorable binding affinity for TLR4, and the protein complex was shown to be stable through molecular dynamics simulations. A robust immune response was induced after immunization, as demonstrated through immune stimulation. Conclusion: In conclusion, the multi-epitope subunit vaccine construct for PEDV designed in this study exhibits promising antigenicity, stability, and immunogenicity, eliciting robust immune responses and suggesting its potential as a candidate for further vaccine development.


Assuntos
Biologia Computacional , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Vacinas de Subunidades Antigênicas , Vacinas Virais , Animais , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Suínos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vacinas Virais/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Genótipo , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Simulação de Acoplamento Molecular , Imunoinformática
3.
Open Vet J ; 14(4): 941-951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38808296

RESUMO

African swine fever virus (ASFV) poses a significant threat to global swine populations, necessitating a profound understanding of viral strategies against host antiviral innate immunity. This review synthesizes current knowledge regarding ASFV proteins and their intricate interactions with host defenses. Noteworthy findings encompass the modulation of interferon signaling, manipulation of inflammatory pathways, and the impact on cellular apoptosis. The implications of these findings provide a foundation for advancing vaccine strategies against ASFV. In conclusion, this review consolidates current knowledge, emphasizing the adaptability of ASFV in subverting host immunity. Identified research gaps underscore the need for continued exploration, presenting opportunities for developing targeted vaccines. This synthesis provides a roadmap for future investigations, aiming to enhance our preparedness against the devastating impact of ASFV on global swine populations.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Imunidade Inata , Proteínas Virais , Vacinas Virais , Vírus da Febre Suína Africana/imunologia , Animais , Suínos , Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Febre Suína Africana/virologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Desenvolvimento de Vacinas
4.
RSC Adv ; 14(14): 10039-10055, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38533097

RESUMO

African swine fever virus (ASFV) has emerged as a serious threat to the pork industry resulting in significant economic losses and heightened concerns about food security. With no known cure presently available, existing control measures center on animal quarantine and culling. Considering the severity and challenges posed by ASFV, it is imperative to discover new treatment strategies and implement additional measures to prevent its further spread. This study recognized the potential of 1830 fungal metabolites from medicinal fungi as antiviral compounds against base excision repair (BER) proteins of ASFV, specifically ASFVAP, ASFVPolX, and ASFVLig. A wide array of computer-aided drug discovery techniques were employed to carry out the virtual screening process: ADMET profiling revealed 319 molecules with excellent bioavailability and toxicity properties; consensus docking identified the 10 best-scoring ligands against all targets; molecular dynamics simulation elucidated the stability of the protein-ligand complexes; and MM/PB(GB)SA energy calculations predicted the binding energies of the compounds as well as the key residues integral to binding. Through in silico methods, we identified two theoretical lead candidates against ASFVAP, four against ASFVLig, and five against ASFVPolX. Two compounds, methyl ganoderate E and antcamphin M, exhibited potential multi-target inhibitory characteristics against ASFVPolX and ASFVLig, while compound cochlactone A showed promising antagonistic results against all three BER proteins. It is recommended to prioritize these hit compounds in future in vitro and in vivo studies to validate their potential as antiviral drugs against ASFV.

5.
Sci Rep ; 14(1): 1354, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228670

RESUMO

Despite being identified over a hundred years ago, there is still no commercially available vaccine for the highly contagious and deadly African swine fever virus (ASFV). This study used immunoinformatics for the rapid and inexpensive designing of a safe and effective multi-epitope subunit vaccine for ASFV. A total of 18,858 proteins from 100 well-annotated ASFV proteomes were screened using various computational tools to identify potential epitopes, or peptides capable of triggering an immune response in swine. Proteins from genotypes I and II were prioritized for their involvement in the recent global ASFV outbreaks. The screened epitopes exhibited promising qualities that positioned them as effective components of the ASFV vaccine. They demonstrated antigenicity, immunogenicity, and cytokine-inducing properties indicating their ability to induce potent immune responses. They have strong binding affinities to multiple swine allele receptors suggesting a high likelihood of yielding more amplified responses. Moreover, they were non-allergenic and non-toxic, a crucial prerequisite for ensuring safety and minimizing any potential adverse effects when the vaccine is processed within the host. Integrated with an immunogenic 50S ribosomal protein adjuvant and linkers, the epitopes formed a 364-amino acid multi-epitope subunit vaccine. The ASFV vaccine construct exhibited notable immunogenicity in immune simulation and molecular docking analyses, and stable profiles in secondary and tertiary structure assessments. Moreover, this study designed an optimized codon for efficient translation of the ASFV vaccine construct into the Escherichia coli K-12 expression system using the pET28a(+) vector. Overall, both sequence and structural evaluations suggested the potential of the ASFV vaccine construct as a candidate for controlling and eradicating outbreaks caused by the pathogen.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Escherichia coli K12 , Suínos , Animais , Epitopos , Vírus da Febre Suína Africana/genética , Simulação de Acoplamento Molecular , Proteoma , Imunoinformática , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito B , Biologia Computacional , Epitopos de Linfócito T
6.
Open Vet J ; 13(9): 1056-1070, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37842102

RESUMO

Nipah Virus (NiV) is a highly virulent pathogen that poses a significant threat to human and animal populations. This review provides a comprehensive overview of the latest control and prevention strategies against NiV, focusing on vaccine development, antiviral drug discovery, early diagnosis, surveillance, and high-level biosecurity measures. Advancements in vaccine research, including live-attenuated vaccines, virus-like particles, and mRNA-based vaccines, hold promise for preventing NiV infections. In addition, antiviral drugs, such as remdesivir, ribavirin, and favipiravir, have the potential to inhibit NiV replication. Early diagnosis through molecular and serological assays, immunohistochemistry, and real-time reverse transcription polymerase chain reaction plays a crucial role in timely detection. Surveillance efforts encompassing cluster-based and case-based systems enhance outbreak identification and provide valuable insights into transmission dynamics. Furthermore, the implementation of high-level biosecurity measures in agriculture, livestock practices, and healthcare settings is essential to minimize transmission risks. Collaboration among researchers, public health agencies, and policymakers is pivotal in refining and implementing these strategies to effectively control and prevent NiV outbreaks and safeguard public health on a global scale.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/veterinária
7.
Open Vet J ; 13(12): 1517-1535, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38292721

RESUMO

The African swine fever virus (ASFV) poses a serious threat to global swine populations, underscoring the urgent need for effective preventive strategies. This comprehensive review investigates the intricate interplay between innate, cellular, and humoral immunity against ASFV, with a focus on their relevance to vaccine development. By delving into immunopathogenesis and immunological challenges, this review article aims to provide a holistic perspective on the complexities of ASFV infections and immune evasion. Key findings underscore the critical role of innate immune recognition in shaping subsequent adaptive immune defenses, potential protective antigens, and the multifaceted nature of ASFV-specific antibodies and cytotoxic T-cell responses. Despite advancements, the unique attributes of ASFV present hurdles in the development of a successful vaccine. In conclusion, this review examines the current state of ASFV immune responses and offers insights into future research directions, fostering the development of effective interventions against this devastating pathogen.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Proteínas Virais , Febre Suína Africana/prevenção & controle , Imunidade Humoral , Desenvolvimento de Vacinas
8.
Dis Aquat Organ ; 125(3): 199-206, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28792418

RESUMO

The farming of the black tiger shrimp Penaeus monodon in the Philippines relies on wild broodstock. PCR was thus used to determine the prevalence of white spot syndrome virus (WSSV), monodon baculovirus (MBV) and Penaeus stylirostris densovirus (PstDV) in a total of 178 shrimp from 6 geographically disparate locations where broodstock are captured for use in hatcheries. PCR amplicons were also sequenced to identify phylogenetic relationships of the virus haplotypes detected. Shrimp from southeastern Luzon (Camarines Norte) had the highest prevalence of each of the 3 viruses and were frequently co-infected with 2 or more viruses. No viruses were detected in shrimp from northwestern Luzon (Pangasinan). MBV was most prevalent and PstDV strains displayed the most genetic diversity. WSSV was detected at 3 sites, and a VP28 gene sequence examined was invariant and consistent with strains found in many countries, including Thailand, China, Japan, Korea, Indonesia, Iran, Brazil and Mexico. WSSV open reading frame 94 gene sequence analysis identified location-specific repeat types. MBV sequences were dissimilar to haplotypes detected in India. PstDV sequences were diverse and included 2 lineages detected either in Australia or in the United States, Ecuador, Taiwan, China and Vietnam. The PCR data confirmed that WSSV, MBV and PstDV are endemic in P. monodon in the Philippines but that populations at some locations might remain free of infection.


Assuntos
Animais Selvagens , Baculoviridae/genética , Densovirus/genética , Variação Genética , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Animais , Baculoviridae/isolamento & purificação , Densovirus/isolamento & purificação , Genoma Viral , Interações Hospedeiro-Patógeno , Filipinas , Filogenia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação
9.
Virusdisease ; 28(3): 262-271, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29291212

RESUMO

Marine animals typically harbor a community of viruses, a number of which are known to cause diseases. In shrimp aquaculture, viral pathogens are the principal causes of major economic losses. However, the composition of the viral load of shrimps in wild population is poorly known. In this study, we explored the viral diversity in the microbiome of wild Penaeus monodon collected from six sites in the Philippines, with a view to detecting pathogenic forms. We employed a metagenomic approach via particle-associated nucleic acid isolation, sequence-independent single primer amplification, and pyrosequencing. Virome analysis of shrimp samples from different sites revealed distinct virome profiles, and hence significant differences in diversity, among the various sites based on number of OTUs, Shannon-Weaver Index, and Inverse Simpson Index. Sequences of key shrimp pathogens were detected such as the white spot syndrome virus (WSSV), and Penaeus stylirostris densovirus (PstDV). However, the patterns of distribution of the pathogenic viruses varied; whereas WSSV was found only in three out of six sites and PstDV were found in all but one site. The results also revealed shrimp-associated viruses that have not yet been observed in P. monodon such as avian virus-like, insect virus-like, plankton virus-like and bacteriophage-like sequences. Despite the diverse array of viruses detected in the study, a large proportion remains unidentified (i.e., similarity to sequences in the database was lower than the threshold required for definitive identification), and therefore could represent unexplored virus sequences and viral genomes in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...