Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(10): 3699-3709, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36857201

RESUMO

Remarkably, the interface of a fluid droplet will produce visible capillary waves when exposed to acoustic waves. For example, a small (∼1 µL) sessile droplet will oscillate at a low ∼102 Hz frequency when weakly driven by acoustic waves at ∼106 Hz frequency and beyond. We measured such a droplet's interfacial response to 6.6 MHz ultrasound to gain insight into the energy transfer mechanism that spans these vastly different time scales, using high-speed microscopic digital transmission holography, a unique method to capture three-dimensional surface dynamics at nanometer space and microsecond time resolutions. We show that low-frequency capillary waves are driven into existence via a feedback mechanism between the acoustic radiation pressure and the evolving shape of the fluid interface. The acoustic pressure is distributed in the standing wave cavity of the droplet, and as the shape of the fluid interface changes in response to the distributed pressure present on the interface, the standing wave field also changes shape, feeding back to produce changes in the acoustic radiation pressure distribution in the cavity. A physical model explicitly based upon this proposed mechanism is provided, and simulations using it were verified against direct observations of both the microscale droplet interface dynamics from holography and internal pressure distributions using microparticle image velocimetry. The pressure-interface feedback model accurately predicts the vibration amplitude threshold at which capillary waves appear, the subsequent amplitude and frequency of the capillary waves, and the distribution of the standing wave pressure field within the sessile droplet responsible for the capillary waves.

2.
Phys Rev E ; 106(4-2): 045101, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397528

RESUMO

Traditionally, acoustic streaming is assumed to be a steady-state, relatively slow fluid response to passing acoustic waves. This assumption, the so-called slow streaming assumption, was made over a century ago by Lord Rayleigh. It produces a tractable asymptotic perturbation analysis from the nonlinear governing equations, separating the acoustic field from the acoustic streaming that it generates. Unfortunately, this assumption is often invalid in the modern microacoustofluidics context, where the fluid flow and acoustic particle velocities are comparable. Despite this issue, the assumption is still widely used today, as there is no suitable alternative. We describe a mathematical method to supplant the classic approach and properly treat the spatiotemporal scale disparities present between the acoustics and remaining fluid dynamics. The method is applied in this work to well-known problems of semi-infinite extent defined by the Navier-Stokes equations, and preserves unsteady fluid behavior driven by the acoustic wave. The separation of the governing equations between the fast (acoustic) and slow (hydrodynamic) spatiotemporal scales are shown to naturally arise from the intrinsic properties of the fluid under forcing, not by arbitrary assumption beforehand. Solution of the unsteady streaming field equations provides physical insight into observed temporal evolution of bulk streaming flows that, to date, have not been modeled. A Burgers equation is derived from our method to represent unsteady flow. By then assuming steady flow, a Riccati equation is found to represent it. Solving these equations produces direct, concise insight into the nonlinearity of the acoustic streaming phenomenon alongside an absolute, universal upper bound of 50% for the energy efficiency in transducing acoustic energy input to the acoustic streaming energy output. Rigorous validation with respect to experimental and theoretical results from the classic literature is presented to connect this work to past efforts by many authors.

3.
Adv Sci (Weinh) ; 9(2): e2101950, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747144

RESUMO

Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here, high-speed digital holographic microscopy (kiloHertz order) is used to visualize the cellular membrane dynamics. It is shown that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, a biomechanical model that predicts changes in membrane voltage after ultrasound exposure is developed. Finally, the model predictions are validated using whole-cell patch clamp electrophysiology on primary neurons. Collectively, it is shown that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. The model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Ondas Ultrassônicas , Animais , Membrana Celular , Células Cultivadas , Humanos , Microscopia , Modelos Animais , Técnicas de Patch-Clamp , Ratos
4.
Phys Rev Lett ; 125(18): 184504, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196229

RESUMO

We study the nozzle-free ejection of liquid droplets at controlled angles from a sessile drop actuated from two, mutually opposed directions by focused surface acoustic waves with dissimilar parameters. Previous researchers assumed that jets formed in this way are limited by the Rayleigh angle. However, when we carefully account for surface tension in addition to the driving force, acoustic streaming, we find a quantitative model that reduces to the Rayleigh angle only when inertia is dominant, and suggests larger ejection angles are possible in many practical situations. We confirm this in demonstrating ejection at more than double the Rayleigh angle. Our model explains the effects of both fluid and input parameters on experiments with a range of liquids. We extract, from this model, a dimensionless number that serves as an analog for the typical Weber number for predicting single droplet events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA