Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(31): 37157-37173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494582

RESUMO

Advances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO2) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices. Yet, high temperatures traditionally preclude SiO2 from incorporation in polymer-based BioMEMS. Electron-beam deposition of SiO2 may provide a low-temperature, dielectric serving as a nanoporous MPS growth substrate. Herein, we enable improved adherence of nanoporous SiO2 to polycarbonate (PC) and 316L stainless steel (SS) via polydopamine (PDA)-mediated chemistry. The resulting stability of the combinatorial PDA-SiO2 film was interrogated, along with the nature of the intrafilm interactions. A custom polymer-metal three-dimensional (3D) microelectrode array (3D MEA) is then reported utilizing PDA-SiO2 insulation, for definition of novel dorsal root ganglion (DRG)/nociceptor and dorsal horn (DH) 3D neural constructs in excess of 6 months for the first time. Spontaneous/evoked compound action potentials (CAPs) are successfully reported. Finally, inhibitory drugs treatments showcase pharmacological responsiveness of the reported multipart biological activity. These results represent the initiation of a novel 3D MEA-integrated, 3D neural MPS for the long-term electrophysiological study.


Assuntos
Polímeros , Dióxido de Silício , Humanos , Microeletrodos , Polímeros/farmacologia , Indóis/farmacologia
2.
Microsyst Nanoeng ; 9: 22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875634

RESUMO

Benchtop tissue cultures have become increasingly complex in recent years, as more on-a-chip biological technologies, such as microphysiological systems (MPS), are developed to incorporate cellular constructs that more accurately represent their respective biological systems. Such MPS have begun facilitating major breakthroughs in biological research and are poised to shape the field in the coming decades. These biological systems require integrated sensing modalities to procure complex, multiplexed datasets with unprecedented combinatorial biological detail. In this work, we expanded upon our polymer-metal biosensor approach by demonstrating a facile technology for compound biosensing that was characterized through custom modeling approaches. As reported herein, we developed a compound chip with 3D microelectrodes, 3D microfluidics, interdigitated electrodes (IDEs) and a microheater. The chip was subsequently tested using the electrical/electrochemical characterization of 3D microelectrodes with 1 kHz impedance and phase recordings and IDE-based high-frequency (~1 MHz frequencies) impedimetric analysis of differential localized temperature recordings, both of which were modeled through equivalent electrical circuits for process parameter extraction. Additionally, a simplified antibody-conjugation strategy was employed for a similar IDE-based analysis of the implications of a key analyte (l-glutamine) binding to the equivalent electrical circuit. Finally, acute microfluidic perfusion modeling was performed to demonstrate the ease of microfluidics integration into such a polymer-metal biosensor platform for potential complimentary localized chemical stimulation. Overall, our work demonstrates the design, development, and characterization of an accessibly designed polymer-metal compound biosensor for electrogenic cellular constructs to facilitate comprehensive MPS data collection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...