Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836256

RESUMO

Nanostructured semiconductors have driven the research in electronic and optoelectronic devices in the new millennium era [...].

2.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374481

RESUMO

The synthesis of crystals with a high surface-to-volume ratio is essential for innovative, high-performance electronic devices and sensors. The easiest way to achieve this in integrated devices with electronic circuits is through the synthesis of high-aspect-ratio nanowires aligned vertically to the substrate surface. Such surface structuring is widely employed for the fabrication of photoanodes for solar cells, either combined with semiconducting quantum dots or metal halide perovskites. In this review, we focus on wet chemistry recipes for the growth of vertically aligned nanowires and technologies for their surface functionalization with quantum dots, highlighting the procedures that yield the best results in photoconversion efficiencies on rigid and flexible substrates. We also discuss the effectiveness of their implementation. Among the three main materials used for the fabrication of nanowire-quantum dot solar cells, ZnO is the most promising, particularly due to its piezo-phototronic effects. Techniques for functionalizing the surfaces of nanowires with quantum dots still need to be refined to be effective in covering the surface and practical to implement. The best results have been obtained from slow multi-step local drop casting. It is promising that good efficiencies have been achieved with both environmentally toxic lead-containing quantum dots and environmentally friendly zinc selenide.

3.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677993

RESUMO

A recent innovation in diamond technology has been the development of the "black diamond" (BD), a material with very high optical absorption generated by processing the diamond surface with a femtosecond laser. In this work, we investigate the optical behavior of the BD samples to prove a near to zero dielectric permittivity in the high electric field condition, where the Frenkel-Poole (FP) effect takes place. Zero-epsilon materials (ENZ), which represent a singularity in optical materials, are expected to lead to remarkable developments in the fields of integrated photonic devices and optical interconnections. Such a result opens the route to the development of BD-based, novel, functional photonic devices.

4.
ACS Appl Nano Mater ; 5(10): 15817-15825, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36338324

RESUMO

The fabrication of devices with accurately controlled properties almost invariably takes advantage of feedback so that, based on real-time measurements, process parameters can be automatically adjusted in order to obtain the desired characteristics. Nevertheless, despite the outstanding advantages of wet-chemistry methods (e.g., simplicity, low-cost, low-temperature, and compatibility with almost any process and type of substrate), the use of feedback in the solution growth of nanostructures is almost unexplored. In fact, conventional techniques for the real-time in-liquid characterization of nanostructures are extremely complex and can introduce intricate artefacts. Here, by taking advantage of an electro-mechanical resonator as a substrate, we on-line monitor, at the system level, the nanostructure growth, thus enabling the feedback-assisted tuning of low-cost electro-mechanical resonators by ZnO nanowires. This approach allows for post-fabrication tuning of the resonant frequency with high accuracy and high tuning range (e.g., about 1% in our experiments) in a simple, fast, low power, and low-cost manner, without requiring expensive facilities such as clean rooms or high-vacuum deposition systems. Moreover, remarkably, we find that for a given desired resonant frequency, the quality factor of the resonance can be separately adjusted by modifying the nutrient solution, which can be a key advantage for filters. The straightforward interfacing and packaging of the final resonator stems from the large difference, about 5 orders of magnitude, between the key structure dimensions, namely, the diameter of the ZnO nanowires and the much larger (e.g., few millimeters) diameter of the quartz. Our results can lead to the widespread application of nanowire-tuned electro-mechanical oscillators and filters in electronics, sensors, and material science.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144998

RESUMO

Antireflection and light-trapping coatings are important parts of photovoltaic architectures, which enable the reduction of parasitic optical losses, and therefore increase the power conversion efficiency (PCE). Here, we propose a novel approach to enhance the efficiency of perovskite solar cells using a light-trapping electrode (LTE) with non-reciprocal optical transmission, consisting of a perforated metal film covered with a densely packed array of nanospheres. Our LTE combines charge collection and light trapping, and it can replace classical transparent conducting oxides (TCOs) such as ITO or FTO, providing better optical transmission and conductivity. One of the most promising applications of our original LTE is the optimization of efficient bifacial perovskite solar cells. We demonstrate that with our LTE, the short-circuit current density and fill factor are improved for both front and back illumination of the solar cells. Thus, we observe an 11% improvement in the light absorption for the monofacial PSCs, and a 15% for the bifacial PSCs. The best theoretical results of efficiency for our PSCs are 27.9% (monofacial) and 33.4% (bifacial). Our study opens new prospects for the further efficiency enhancement for perovskite solar cells.

6.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808088

RESUMO

Black diamond is an emerging material for solar applications. The femtosecond laser surface treatment of pristine transparent diamond allows the solar absorptance to be increased to values greater than 90% from semi-transparency conditions. In addition, the defects introduced by fs-laser treatment strongly increase the diamond surface electrical conductivity and a very-low activation energy is observed at room temperature. In this work, the investigation of electronic transport mechanisms of a fs-laser nanotextured diamond surface is reported. The charge transport was studied down to cryogenic temperatures, in the 30−300 K range. The samples show an activation energy of a few tens of meV in the highest temperature interval and for T < 50 K, the activation energy diminishes to a few meV. Moreover, thanks to fast cycles of measurement, we noticed that the black-diamond samples also seem to show a behavior close to ferromagnetic materials, suggesting electron spin influence over the transport properties. The mentioned properties open a new perspective in designing novel diamond-based biosensors and a deep knowledge of the charge-carrier transport in black diamond becomes fundamental.

7.
Sensors (Basel) ; 20(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731399

RESUMO

Highly accurate and stable current references are especially required for resistive-sensor conditioning. The solutions typically adopted in using resistors and op-amps/transistors display performance mainly limited by resistors accuracy and active components non-linearities. In this work, excellent characteristics of LT199x selectable gain amplifiers are exploited to precisely divide an input current. Supplied with a 100 µA reference IC, the divider is able to exactly source either a ~1 µA or a ~0.1 µA current. Moreover, the proposed solution allows to generate a different value for the output current by modifying only some connections without requiring the use of additional components. Experimental results show that the compliance voltage of the generator is close to the power supply limits, with an equivalent output resistance of about 100 GΩ, while the thermal coefficient is less than 10 ppm/°C between 10 and 40 °C. Circuit architecture also guarantees physical separation of current carrying electrodes from voltage sensing ones, thus simplifying front-end sensor-interface circuitry. Emulating a resistive-sensor in the 10 kΩ-100 MΩ range, an excellent linearity is found with a relative error within ±0.1% after a preliminary calibration procedure. Further advantage is that compliance voltage can be opposite in sign of that obtained with a passive component; therefore, the system is also suitable for conditioning active sensors.

8.
Adv Mater ; 27(40): 6271-6, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26378901

RESUMO

The accurate determination of the 3D geometries of single-crystal quasi-1D nanostructures is described, including sidelengths, perimeters, areas, lengths, and azimuth and elevation angles. This is a major step toward the synthesis of quasi-1D nanostructures with superior uniformity, and tightly controlled geometrical or geometry-dependent properties.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Nanoestruturas/química , Eletrodos , Microscopia Eletrônica de Varredura , Prata/química , Óxido de Zinco/química
9.
Sci Rep ; 4: 6285, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190110

RESUMO

Wet-chemistry methods have crucial advantages for the synthesis of nanostructures, including simple, low-cost, large-area, and low-temperature deposition on almost arbitrary substrates. Nevertheless, the rational design of improved wet-chemistry procedures is extremely difficult because, in practice, only post-synthesis characterization is possible. In fact, the only methods for on-line monitoring the growth of nanostructures in liquids are complex, expensive and introduce intricate artifacts. Here we demonstrate that electro-mechanically resonating substrates and in-situ temperature sensors easily enable an accurate real-time investigation of reaction kinetics and, in combination with conventional SEM imaging, greatly facilitate the rational design of optimized synthesis procedures; in particular, such a simple approach provides useful insight for the development of processes where one or more key parameters are dynamically adjusted. As a proof-of-concept, first, we accurately characterize a process for fabricating arrays of ZnO nanorods; afterwards, we design a dynamic-temperature process that, in comparison with the corresponding constant-temperature procedure, is almost-ideally energy efficient and results in ZnO nanorods with improved characteristics in terms of length, aspect ratio, and total deposited nanorods mass. This is a major step towards the rational design of dynamic procedures for the solution growth of nanostructures.

10.
Nanotechnology ; 24(35): 355503, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23924776

RESUMO

Resonant sensors with nanostructured surfaces have long been considered as an emergent platform for high-sensitivity transduction because of the potentially very large sensing areas. Nevertheless, until now only complex, time-consuming, expensive and sub-optimal fabrication procedures have been described; in fact, especially with reference to in-liquid applications, very few devices have been reported. Here, we first demonstrate that, by immersing standard, ultra-low-cost quartz resonators with un-polished silver electrodes in a conventional zinc nitrate/HMTA equimolar nutrient solution, the gentle contamination from the metallic package allows direct growth on the electrodes of arrays of high-density (up to 10 µm⁻²) and well-separated (no fusion at the roots) ZnO nanowires without any seed layer or thermal annealing. The combination of high-density and good separation is ideal for increasing the sensing area; moreover, this uniquely simple, single-step process is suitable for conventional, ultra-low-cost and high-frequency quartzes, and results in devices that are already packaged and ready to use. As an additional advantage, the process parameters can be effectively optimized by measuring the quartz admittance before and after growth. As a preliminary test, we show that the sensitivity to the liquid properties of high-frequency (i.e. high sensitivity) quartzes can be further increased by nearly one order of magnitude and thus show the highest ever reported frequency shifts of an admittance resonance in response to immersion in both ethanol and water.


Assuntos
Nanofios/química , Técnicas de Microbalança de Cristal de Quartzo/instrumentação , Óxido de Zinco/química , Temperatura Baixa , Cristalização , Eletrodos , Desenho de Equipamento , Metenamina/química , Nanofios/ultraestrutura , Nitratos/química , Prata/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...