RESUMO
The main goal of regenerative endodontics procedures (REPs) is to revitalize teeth by the regeneration of healthy dental pulp. In this study, we evaluated the potential of combining a natural and accessible biomaterial based on Platelet Poor Plasma (PPP) as a support for dental pulp stem cells (DPSC) and umbilical cord mesenchymal stem cells (UC-MSC). A comparison study between the two cell sources revealed compatibility with the PPP based scaffold with differences noted in the proliferation and angiogenic properties in vitro. Additionally, the release of growth factors including VEGF, HGF and DMP-1, was detected in the media of cultured PPP and was enhanced by the presence of the encapsulated MSCs. Dentin-Discs from human molars were filled with PPP alone or with MSCs and implanted subcutaneously for 4 weeks in mice. Histological analysis of the MSC-PPP implants revealed a newly formed dentin-like structure evidenced by the expression of Dentin sialophosphoprotein (DSPP). Finally, DPSC induced more vessel formation around the dental discs. This study provides evidence of a cost-effective, xenofree scaffold that is compatible with either autologous or allogenic strategy for dental pulp regeneration. This attempt if successfully implemented, could make REPs treatment widely accessible, contributing in improving global health conditions.
Assuntos
Polpa Dentária/fisiologia , Regeneração , Alicerces Teciduais , Animais , Polpa Dentária/citologia , Feminino , Humanos , Recém-Nascido , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica , Plasma , Cordão Umbilical/citologia , Adulto JovemRESUMO
Mesenchymal stem cells (MSCs) have fueled ample translation for the treatment of immune-mediated diseases. They exert immunoregulatory and tissue-restoring effects. MSC-mediated transfer of mitochondria (MitoT) has been demonstrated to rescue target organs from tissue damage, yet the mechanism remains to be fully resolved. Therefore, we explored the effect of MitoT on lymphoid cells. Here, we describe dose-dependent MitoT from mitochondria-labeled MSCs mainly to CD4+ T cells, rather than CD8+ T cells or CD19+ B cells. Artificial transfer of isolated MSC-derived mitochondria increases the expression of mRNA transcripts involved in T-cell activation and T regulatory cell differentiation including FOXP3, IL2RA, CTLA4, and TGFß1, leading to an increase in a highly suppressive CD25+ FoxP3+ population. In a GVHD mouse model, transplantation of MitoT-induced human T cells leads to significant improvement in survival and reduction in tissue damage and organ T CD4+ , CD8+ , and IFN-γ+ expressing cell infiltration. These findings point to a unique CD4+ T-cell reprogramming mechanism with pre-clinical proof-of-concept data that pave the way for the exploration of organelle-based therapies in immune diseases.
Assuntos
Células-Tronco Mesenquimais , Linfócitos T CD8-Positivos , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias , Linfócitos T ReguladoresRESUMO
Recently, exosomes secreted by menstrual mesenchymal stem cells have been identified as inhibitory agents of tumor angiogenesis and modulators of the tumor cell secretome in prostate and breast cancer. However, their direct effect on endothelial cells and paracrine mediators have not yet been investigated. Using a carrier-based cell culture system to test the scalability for exosome production, we showed that different types of endothelial cells present specific kinetics for exosomes internalization. Exosome-treatment of endothelial cells increased cytotoxicity and reduced VEGF secretion and angiogenesis in a dose-dependent manner. Using the hamster buccal pouch carcinoma as a preclinical model for human oral squamous cell carcinoma, we demonstrated a significant antitumor effect of intra-tumoral injection of exosomes associated with a loss of tumor vasculature. These results address up-scaling of exosome production, a relevant issue for their clinical application, and also assess menstrual stem cell exosomes as potential anti-angiogenic agents for the treatment of neoplastic conditions.