Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801426

RESUMO

This paper describes a magnetic nanotechnology that locally enables hyperthermia treatment of hollow organ tumors by using polymer hybrid stents with incorporated magnetic nanoparticles (MNP). The hybrid stents are implanted and activated in an alternating magnetic field to generate therapeutically effective heat, thereby destroying the tumor. Here, we demonstrate the feasibility of nanomagnetic actuation of three prototype hybrid stents for hyperthermia treatment of hollow organ tumors. The results show that the heating efficiency of stent filaments increases with frequency from approximately 60 W/gFe (95 kHz) to approximately 250 W/gFe (270 kHz). The same trend is observed for the variation of magnetic field amplitude; however, heating efficiency saturates at approximately 30 kA/m. MNP immobilization strongly influences heating efficiency showing a relative difference in heating output of up to 60% compared to that of freely dispersed MNP. The stents showed uniformly distributed heat on their surface reaching therapeutically effective temperatures of 43 °C and were tested in an explanted pig bile duct for their biological safety. Nanomagnetic actuation of hybrid stents opens new possibilities in cancer treatment of hollow organ tumors.

2.
Opt Express ; 24(22): 25785-25796, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828513

RESUMO

Simple optical techniques that can accurately and selectively identify organic and inorganic material in a reproducible manner are of paramount importance in biological sensing applications. In this work, we demonstrate that a nanoimprinted plasmonic pattern with locked-in dimensions supports sharp deterministic hybrid resonances when coupled with an optical cavity suitable for high sensitive surface detection. The surface sensing property of this hybrid system is quantified by precise atomic layer growth of aluminum oxide using the atomic layer deposition technique. The analyte specific sensing ability is demonstrated in the detection of two dissimilar analytes, inorganic amine-coated iron oxide nanoparticles and organic streptavidin protein. Femto to nanomolar detection limits were achieved with the proposed coupled plasmonic system based on the versatile and robust soft nanoimprinting technique, which promises practical low cost biosensors.


Assuntos
Técnicas Biossensoriais , Óptica e Fotônica , Estreptavidina/análise , Óxido de Alumínio , Limite de Detecção , Nanoestruturas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...