Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Infect Dis Poverty ; 12(1): 106, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008772

RESUMO

BACKGROUND: Over the past two decades, preventive chemotherapy (PC) with praziquantel (PZQ) is the major strategy for controlling schistosomiasis in Senegal. The objective of this analysis was to update the endemicity of schistosomiasis at community level for better targeting mass treatment with PZQ in Senegal. METHODS: Demographic and epidemiological data from 1610 community health areas were analyzed using the schistosomiasis community data analysis tool of Expanded Special Project for Elimination of Neglected Tropical Diseases which developed by World Health Organization/Africa Office (WHO/AFRO). The tool uses a WHO/AFRO decision tree for areas without epidemiological data to determine whether mass treatment should be continued at community level. Descriptive analysis was performed. RESULTS: Overall, the endemicity of 1610 community health areas were updated based on the data from the district endemicity (33.5%) and the form of Join request for selected PC medicine (40.5%). Up to 282 (17.5%) and 398 (24.7%) of community health areas were classified as moderate and high endemicity. 41.1% of communities were non endemic. High endemicity was more important in Tambacounda, Saint Louis, Matam, Louga and Kedougou. A change in endemicity category was observed when data was disagregted from district level to community level. Implementation units classified non endemic were more important at community level (n = 666) compared to district level (n = 324). Among 540 areas previously classified high endemic at district level, 392 (72.6%) remained high prevalence category, while 92 (17.0%) became moderate, 43 (8.0%) low and 13 (2.4%) non-endemics at community level. Number of implementation units requiring PC was more important at district level (1286) compared to community level (944). Number of school aged children requiring treatment was also more important at district level compared to community level. CONCLUSIONS: The analysis to disaggregate data from district level to community level using the WHO/AFRO schistosomiasis sub-district data optimization tool provide an update of schistosomiasis endemicity at community level. This study has allowed to better target schistosomiasis interventions, optimize use of available PZQ and exposed data gaps.


Assuntos
Anti-Helmínticos , Esquistossomose , Criança , Humanos , Praziquantel/uso terapêutico , Senegal/epidemiologia , Esquistossomose/tratamento farmacológico , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Quimioprevenção , Prevalência , Anti-Helmínticos/uso terapêutico
3.
Int J Health Geogr ; 5: 27, 2006 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-16784527

RESUMO

BACKGROUND: In this paper we analyse the Plasmodium sp. prevalence in three villages with different isolation status on the island of Bioko (Equatorial Guinea) where malaria is a hyper-endemic disease. We also describe the genetic diversity of P. falciparum, using several plasmodia proteins as markers which show a high degree of polymorphism (MSP-1 and MSP-2). The results obtained from three different populations are compared in order to establish the impact of human movements and interventions. METHODS: Plasmodium sp. were analysed in three villages on Bioko Island (Equatorial Guinea), one of which (Southern) is isolated by geographical barriers. The semi-nested multiplex polymerase chain reaction (PCR) technique was used to determine the prevalence of the four human plasmodia species. The genotyping and frequency of P. falciparum populations were determined by PCR assay target polymorphism regions of the merozoite surface proteins 1 and 2 genes (MSP-1 and MSP-2). RESULTS: The data obtained show that there are no differences in plasmodia population flow between the Northwest and Eastern regions as regards the prevalence of the different Plasmodium species. The Southern population, on the other hand, shows a minor presence of P. malariae and a higher prevalence of P. ovale, suggesting some kind of transmission isolated from the other two. The P. falciparum genotyping in the different regions points to a considerable allelic diversity in the parasite population on Bioko Island, although this is somewhat higher in the Southern region than the others. There was a correlation between parasitaemia levels and the age of the individual with the multiplicity of infection (MOI). CONCLUSION: Results could be explained by the selection of particular MSP alleles. This would tend to limit diversity in the parasite population and leading up to the extinction of rare alleles. On the other hand, the parasite population in the isolated village has less outside influence and the diversity of P. falciparum is maintained higher. The knowledge of parasite populations and their relationships is necessary to study their implications for control intervention.


Assuntos
Parasitemia/epidemiologia , Plasmodium falciparum/genética , Alelos , Animais , Criança , Pré-Escolar , Guiné Equatorial/epidemiologia , Variação Genética , Humanos , Parasitemia/classificação , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Prevalência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...