Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(7): 173, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750329

RESUMO

The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.


Assuntos
Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Transdução de Sinais , Ascomicetos/genética , Ascomicetos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Filogenia
2.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456839

RESUMO

Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.


Assuntos
Candida albicans , Candida , Humanos , Candida/genética , Candida albicans/genética , Candida tropicalis/genética , Evolução Biológica
3.
Yeast ; 41(1-2): 35-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054508

RESUMO

Yeasts are a diverse group of fungal microorganisms that are widely used to produce fermented foods and beverages. In Mexico, open fermentations are used to obtain spirits from agave plants. Despite the prevalence of this traditional practice throughout the country, yeasts have only been isolated and studied from a limited number of distilleries. To systematically describe the diversity of yeast species from open agave fermentations, here we generate the YMX-1.0 culture collection by isolating 4524 strains from 68 sites with diverse climatic, geographical, and biological contexts. We used MALDI-TOF mass spectrometry for taxonomic classification and validated a subset of the strains by ITS and D1/D2 sequencing, which also revealed two potential novel species of Saccharomycetales. Overall, the composition of yeast communities was weakly associated with local variables and types of climate, yet a core set of six species was consistently isolated from most producing regions. To explore the intraspecific variation of the yeasts from agave fermentations, we sequenced the genomes of four isolates of the nonconventional yeast Kazachstania humilis. The genomes of these four strains were substantially distinct from a European isolate of the same species, suggesting that they may belong to different populations. Our work contributes to the understanding and conservation of an open fermentation system of great cultural and economic importance, providing a valuable resource to study the biology and genetic diversity of microorganisms living at the interface of natural and human-associated environments.


Assuntos
Agave , Humanos , Fermentação , Agave/microbiologia , México , Leveduras , Bebidas Alcoólicas/microbiologia
4.
Genome Biol ; 24(1): 59, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Animais , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único
5.
Opt Lett ; 48(3): 712-714, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723570

RESUMO

We have demonstrated a record-high 1.2 kW, all-fiber multicore amplifier using a six-core single-mode Yb-doped fiber and a multicore pump-signal combiner (PSC). The output power is limited by the pump power of 1.9 kW. We have developed double-clad six-core fibers and PSCs for this demonstration. Each of the six Yb-doped cores has a 17-µm mode-field diameter (MFD) with a trench index profile and is capable of kW-class operation. The potential power scaling to the 10-kW level in a single amplifier with high brightness should be feasible with advanced thermal management and coherent beam combination.

6.
Methods Mol Biol ; 2495: 91-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696029

RESUMO

The ability of modifying the genome of multiple species, precisely and without or minimal off-targeted effects, have opened numerous opportunities for the biotechnology industry. In this chapter, we describe an easy to establish, robust, and practical pipeline that can be used to generate immortalized cell lines, from different tissues, to capture cell linage context and validate the tools required for genome editing and genetic modification. This pipeline serves as a reference for similar approaches for gene interrogation in other species.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Linhagem Celular , Genoma
7.
Microbiol Resour Announc ; 11(3): e0115421, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234491

RESUMO

The ascomycetous yeast Kazachstania humilis is an active species in backslopped sourdough and in the spontaneous fermentation of several traditional foods and beverages. Here, we report the draft genome sequence of a K. humilis strain isolated from agave must from a traditional distillery in Mexico.

8.
Plants (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477999

RESUMO

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (H2O2), in the methylome status has not been elucidated. A transgenic tobacco model to the CchGLP gene displayed high H2O2 endogen levels correlated with biotic and abiotic stresses resistance. The present study aimed to determine the DNA methylation status changes in the transgenic model to obtain more information about the molecular mechanism involved in resistance phenotypes. The Whole-genome bisulfite sequencing analysis revealed a minimal impact of overall levels and distribution of methylation. A total of 9432 differential methylated sites were identified in distinct genome regions, most of them in CHG context, with a trend to hypomethylation. Of these, 1117 sites corresponded to genes, from which 83 were also differentially expressed in the plants. Several genes were associated with respiration, energy, and calcium signaling. The data obtained highlighted the relevance of the H2O2 in the homeostasis of the system in stress conditions, affecting at methylation level and suggesting an association of the H2O2 in the physiological adaptation to stress functional linkages may be regulated in part by DNA methylation.

9.
Physiol Mol Biol Plants ; 26(1): 3-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158116

RESUMO

Transgenic tobacco (N. tabacum cv. Xanthi nc) expressing Capsicum chinense CchGLP gene that encodes an Mn-SOD, constitutively produces hydrogen peroxide that increase endogenous ROS levels. Previous studies using these plants against geminivirus infections as well as drought stress confirmed that CchGLP expression conferred resistance against biotic and abiotic stresses. Cadmium (Cd) and Aluminium (Al) contamination in soils are a major ecological concern since they are two of the most widespread toxic elements in terrestrial environments. Trying to explore additional possible tolerance to another stresses in these plants, the aim of this work was to analyse the response to cadmium and aluminium salts during germination and early stages of plantlet development and a differential transcriptome of microRNAs (miRNAs) expression in expressing CchGLP transgenic lines and an azygote non-CchGLP expressing line. Plants were grown in vitro with addition of CdCl2 and AlCl3 at three different concentrations: 100, 300 and 500 µM and 50, 150 and 300 µM, respectively. The results showed higher tolerance to Cd and Al salts evaluated in two CchGLP-expressing transgenic lines L8 and L26 in comparison with the azygous non-CchGLP expressing line L1. Interestingly, L8 under Al stress presented vigorous roots and development of radicular hairs in comparison with azygous control (L1). Differentially expressed miRNAs in the comparison between L8 and L1 were associated with up and down-regulation of target genes related with structural molecule activity and ribosome constituents, as well as down-regulation in proton-transporting V-type ATPase (Vacuolar ATPase or V-ATPase). Moreover, KEGG analysis of the target genes for the differentially expressed miRNAs, led to identification of genes related with metabolic pathways and biosynthesis of secondary metabolites. One possible explanation of the tolerance to Cd and Al displayed in the transgenic tobaccos evaluated, might involve the fact that several down-regulated miRNAs, were found associated with target genes expressing V-ATPase. Specifically, miR7904-5p was down regulated and related with the up-regulation of one V-ATPase. The expression levels of these genes was confirmed by qRT-PCR assays, thus suggesting that a cation transport activity driven by the V-ATPases-dependent proton motive force, might significantly contribute as one mechanism for Cd and Al detoxification by vacuolar compartmentation in these transgenic tobacco plants.

10.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291975

RESUMO

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Assuntos
Ambystoma mexicanum/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Regeneração/genética , Transcrição Gênica , Transcriptoma , Ambystoma mexicanum/fisiologia , Animais , Feminino , Biblioteca Gênica , Ontologia Genética , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Especificidade de Órgãos , Análise de Componente Principal , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Especificidade da Espécie
11.
Stem Cells Int ; 2016: 5127984, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880968

RESUMO

Pluripotent stem cells (PSCs) fall in two states, one highly undifferentiated, the naïve state, and the primed state, characterized by the inability to contribute to germinal lineage. Several reports have demonstrated that these states can be modified by changes to the cell culture conditions. With the advent of nuclear reprogramming, bovine induced pluripotent stem cells (biPSCs) have been generated. These cells represent examples of a transient-intermediate state of pluripotency with remarkable characteristics and biotechnological potential. Herein, we generated and characterized biPSC. Next, we evaluated different culture conditions for the ability to affect the expression of the set of core pluripotent transcription factors in biPSC. It was found that the use of 6-bromoindirubin-3-oxime and Sc1 inhibitors alone or in combination with 5-AzaC induced significantly higher levels of expression of endogenous REX1, OCT4, NANOG, and SOX2. Furthermore, LIF increased the levels of expression of OCT4 and REX1, compared with those cultured with LIF + bFGF. By contrast, bFGF decreased the levels of expression for both REX1 and OCT4. These results demonstrate that the biPSC gene expression profile is malleable by modification of the cell culture conditions well after nuclear reprogramming, and the culture conditions may determine their differentiation potential.

12.
Mol Reprod Dev ; 83(2): 149-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26660942

RESUMO

Primordial germ cells (PGCs) are the earliest identifiable and completely committed progenitors of female and male gametes. They are obvious targets for genome editing because they assure the transmission of desirable or introduced traits to future generations. PGCs are established at the earliest stages of embryo development and are difficult to propagate in vitro--two characteristics that pose a problem for their practical application. One alternative method to enrich for PGCs in vitro is to differentiate them from pluripotent stem cells derived from adult tissues. Here, we establish a reporter system for germ cell identification in bovine pluripotent stem cells based on green fluorescent protein expression driven by the minimal essential promoter of the bovine Vasa homolog (BVH) gene, whose regulatory elements were identified by orthologous modelling of regulatory units. We then evaluated the potential of bovine induced pluripotent stem cell (biPSC) lines carrying the reporter construct to differentiate toward the germ cell lineage. Our results showed that biPSCs undergo differentiation as embryoid bodies, and a fraction of the differentiating cells expressed BVH. The rate of differentiation towards BVH-positive cells increased up to tenfold in the presence of bone morphogenetic protein 4 or retinoic acid. Finally, we determined that the expression of key PGC genes, such as BVH or SOX2, can be modified by pre-differentiation cell culture conditions, although this increase is not necessarily mirrored by an increase in the rate of differentiation.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , RNA Helicases DEAD-box/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Tretinoína/farmacologia , Animais , Bovinos , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos
13.
Methods Mol Biol ; 1330: 57-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621589

RESUMO

Nuclear reprogramming technologies in general and induced pluripotent stem cells (iPSCs) in particular have opened the door to a vast number of practical applications in regenerative medicine and biotechnology. It also represents a possible alternative to the still evasive achievement of embryonic stem cells (ESCs) isolation from refractory species such as Bos. taurus. Herein, we described a protocol for bovine iPSCs (biPSCs) generation and characterization. The protocol is based on the overexpression of the exogenous transcription factors NANOG, OCT4, SOX2, KLF4 and c-MYC, using a pantropic retroviral system.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Bovinos , Técnicas de Cultura de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Corpos Embrioides , Feminino , Vetores Genéticos/genética , Xenoenxertos , Fator 4 Semelhante a Kruppel , Camundongos , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratoma/genética , Teratoma/patologia , Transdução Genética , Transgenes
14.
Methods Mol Biol ; 1330: 253-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26621602

RESUMO

Interest is increasing in transcription activator-like effector nucleases (TALENs) as a tool to introduce targeted double-strand breaks into the large genomes of human and animal cell lines. The produced DNA lesions stimulate DNA repair pathways, error-prone but dominant non-homologous end joining (NHEJ) and accurate but less occurring homology-directed repair (HDR), and as a result targeted genes can be modified. Here, we describe a modified Golden-Gate cloning method for generating TALENs and also details for targeting genes in mouse embryonic stem cells. The protocol described here can be used for modifying the genome of a broad range of pluripotent cell lines.


Assuntos
Endonucleases/metabolismo , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma , Animais , Sítios de Ligação , Clonagem Molecular , Biologia Computacional/métodos , Células-Tronco Embrionárias , Camundongos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Ligação Proteica , Análise de Sequência de DNA , Transfecção
15.
Adv Exp Med Biol ; 786: 5-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696349

RESUMO

The molecular and phenotypic irreversibility of mammalian cell differentiation was a fundamental principle of developmental biology at least until the 1980s, despite numerous reports dating back to the 1950s of the induction of pluripotency in amphibian cells by nuclear transfer (NT). Landmark reports in the 1980s and 1990s in sheep progressively challenged this dogmatic assumption; firstly, embryonic development of reconstructed embryos comprising whole (donor) blastomeres fused to enucleated oocytes, and famously, the cloning of Dolly from a terminally differentiated cell. Thus, the intrinsic ability of oocyte-derived factors to reverse the differentiated phenotype was confirmed. The concomitant elucidation of methods for human embryonic stem cell isolation and cultivation presented opportunities for therapeutic cell replacement strategies, particularly through NT of patient nuclei to enucleated oocytes for subsequent isolation of patient-specific (autologous), pluripotent cells from the resulting blastocysts. Associated logistical limitations of working with human oocytes, in addition to ethical and moral objections prompted exploration of alternative approaches to generate autologous stem cells for therapy, utilizing the full repertoire of factors characteristic of pluripotency, primarily through cell fusion and use of pluripotent cell extracts. Stunningly, in 2006, Japanese scientists described somatic cell reprogramming through delivery of four key factors (identified through a deductive approach from 24 candidate genes). Although less efficient than previous approaches, much of current stem cell research adopts this focused approach to cell reprogramming and (autologous) cell therapy. This chapter is a quasi-historical commentary of the various aforementioned approaches for the induction of pluripotency in lineage-committed cells, and introduces transcriptional and epigenetic changes occurring during reprogramming.


Assuntos
Blastocisto/citologia , Reprogramação Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/citologia , Anfíbios , Animais , Blastocisto/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/genética , Fusão Celular , Clonagem de Organismos/história , Desenvolvimento Embrionário , História do Século XX , História do Século XXI , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Transferência Nuclear/história , Oócitos/citologia , Oócitos/metabolismo , Ovinos , Transcrição Gênica
16.
Stem Cells Int ; 2012: 541014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619682

RESUMO

Exogenous expression of Oct4, Sox2, Klf4, and cMyc forces mammalian somatic cells to adopt molecular and phenotypic characteristics of embryonic stem cells, commencing with the required suppression of lineage-associated genes (e.g., Thy1 in mouse). Although omitting cMyc from the reprogramming cocktail minimizes risks of uncontrolled proliferation, its exclusion results in fold reductions in reprogramming efficiency. Thus, the feasibility of substituting cMyc transgene with (non-integrative) recombinant "pTAT-mcMyc" protein delivery was assessed, without compromising reprogramming efficiency or the pluripotent phenotype. Purification and delivery of semisoluble/particulate pTAT-mcMyc maintained Oct4-GFP(+) colony formation (i.e., reprogramming efficiency) whilst supporting pluripotency by various criteria. Differential repression of Thy1 by pTAT-mcMyc ± Oct4, Sox2, and Klf4 (OSK) suggested differential (and non-additive) mechanisms of repression. Extending these findings, attempts to enhance reprogramming efficiency through a staggered approach (prerepression of Thy1) failed to improve reprogramming efficiency. We consider protein delivery a useful tool to decipher temporal/molecular events characterizing somatic cell reprogramming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...