Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 587: 109845, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517331

RESUMO

SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.

2.
J Virol ; 95(15): e0077721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011549

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Capuzes de RNA/genética , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Encefalomielite Equina Venezuelana/patologia , Encefalomielite Equina Venezuelana/virologia , Cavalos , Humanos , Metiltransferases/metabolismo , Conformação de Ácido Nucleico , Nucleotidiltransferases/metabolismo , Proteínas não Estruturais Virais/genética
3.
Antiviral Res ; 182: 104883, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32750467

RESUMO

Alphaviruses are arthropod-borne viruses of public health concern. To date no efficient vaccine nor antivirals are available for safe human use. During viral replication the nonstructural protein 1 (nsP1) catalyzes capping of genomic and subgenomic RNAs. The capping reaction is unique to the Alphavirus genus. The whole three-step process follows a particular order: (i) transfer of a methyl group from S-adenosyl methionine (SAM) onto a GTP forming m7GTP; (ii) guanylylation of the enzyme to form a m7GMP-nsP1adduct; (iii) transfer of m7GMP onto 5'-diphosphate RNA to yield capped RNA. Specificities of these reactions designate nsP1 as a promising target for antiviral drug development. In the current study we performed a mutational analysis on two nsP1 positions associated with Sindbis virus (SINV) ribavirin resistance in the Venezuelan equine encephalitis virus (VEEV) context through reverse genetics correlated to enzyme assays using purified recombinant VEEV nsP1 proteins. The results demonstrate that the targeted positions are strongly associated to the regulation of the capping reaction by increasing the affinity between GTP and nsP1. Data also show that in VEEV the S21A substitution, naturally occurring in Chikungunya virus (CHIKV), is a hallmark of ribavirin susceptibility. These findings uncover the specific mechanistic contributions of these residues to nsp1-mediated methyl-transfer and guanylylation reactions.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Mutação , Capuzes de RNA/metabolismo , Ribavirina/farmacologia , Proteínas não Estruturais Virais/genética , Animais , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Chlorocebus aethiops , Farmacorresistência Viral , Vírus da Encefalite Equina Venezuelana/genética , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...