Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(5): e13704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770102

RESUMO

Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.

2.
Evol Appl ; 16(2): 279-292, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793696

RESUMO

Understanding the genetic targets of natural selection is one of the most challenging goals of population genetics. Some of the earliest candidate genes were identified from associations between allozyme allele frequencies and environmental variation. One such example is the clinal polymorphism in the arginine kinase (Ak) gene in the marine snail Littorina fabalis. While other enzyme loci do not show differences in allozyme frequencies among populations, the Ak alleles are near differential fixation across repeated wave exposure gradients in Europe. Here, we use this case to illustrate how a new sequencing toolbox can be employed to characterize the genomic architecture associated with historical candidate genes. We found that the Ak alleles differ by nine nonsynonymous substitutions, which perfectly explain the different migration patterns of the allozymes during electrophoresis. Moreover, by exploring the genomic context of the Ak gene, we found that the three main Ak alleles are located on different arrangements of a putative chromosomal inversion that reaches near fixation at the opposing ends of two transects covering a wave exposure gradient. This shows Ak is part of a large (3/4 of the chromosome) genomic block of differentiation, in which Ak is unlikely to be the only target of divergent selection. Nevertheless, the nonsynonymous substitutions among Ak alleles and the complete association of one allele with one inversion arrangement suggest that the Ak gene is a strong candidate to contribute to the adaptive significance of the inversion.

3.
Open Biol ; 7(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28381628

RESUMO

Bioluminescence relies on the oxidation of a luciferin substrate catalysed by a luciferase enzyme. Luciferins and luciferases are generic terms used to describe a large variety of substrates and enzymes. Whereas luciferins can be shared by phylogenetically distant organisms which feed on organisms producing them, luciferases have been thought to be lineage-specific enzymes. Numerous light emission systems would then have co-emerged independently along the tree of life resulting in a plethora of non-homologous luciferases. Here, we identify for the first time a candidate luciferase of a luminous echinoderm, the ophiuroid Amphiura filiformis Phylogenomic analyses identified the brittle star predicted luciferase as homologous to the luciferase of the sea pansy Renilla (Cnidaria), contradicting with the traditional viewpoint according to which luciferases would generally be of convergent origins. The similarity between the Renilla and Amphiura luciferases allowed us to detect the latter using anti-Renilla luciferase antibodies. Luciferase expression was specifically localized in the spines which were demonstrated to be the bioluminescent organs in vivo However, enzymes homologous to the Renilla luciferase but unable to trigger light emission were also identified in non-luminous echinoderms and metazoans. Our findings strongly indicate that those enzymes, belonging to the haloalkane dehalogenase family, might then have been convergently co-opted into luciferases in cnidarians and echinoderms. In these two benthic suspension-feeding species, similar ecological pressures would constitute strong selective forces for the functional shift of these enzymes and the emergence of bioluminescence.


Assuntos
Cnidários/enzimologia , Equinodermos/enzimologia , Luciferases/metabolismo , Luminescência , Sequência de Aminoácidos , Animais , Cnidários/genética , Equinodermos/genética , Ativação Enzimática , Expressão Gênica , Luciferases/química , Luciferases/genética , Luciferases de Renilla/química , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Medições Luminescentes/métodos , Filogenia , Transporte Proteico
4.
Glycobiology ; 27(5): 438-449, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130266

RESUMO

Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation.


Assuntos
Sulfatos de Condroitina/biossíntese , Dermatan Sulfato/biossíntese , Glicosaminoglicanos/biossíntese , Regeneração/genética , Animais , Proliferação de Células/genética , Cloratos/farmacologia , Sulfatos de Condroitina/genética , Dermatan Sulfato/genética , Dissacarídeos/genética , Dissacarídeos/metabolismo , Equinodermos/genética , Equinodermos/crescimento & desenvolvimento , Glicosaminoglicanos/genética , Sulfotransferases/genética
5.
Methods Mol Biol ; 1452: 13-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27460368

RESUMO

The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths' different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.


Assuntos
Organismos Aquáticos/genética , Biologia Marinha/métodos , Análise de Sequência de DNA/métodos , Animais , Organismos Aquáticos/classificação , Biodiversidade , Genômica , Invertebrados/classificação , Invertebrados/genética , Phaeophyceae/classificação , Phaeophyceae/genética , Thoracica/classificação , Thoracica/genética , Microbiologia da Água , Leveduras/classificação , Leveduras/genética
6.
Evodevo ; 7: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26759711

RESUMO

BACKGROUND: The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. RESULTS: We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformis pplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. CONCLUSION: Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms.

7.
Mar Genomics ; 24 Pt 3: 245-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26321383

RESUMO

Coscinasterias is a cosmopolitan genus of large asteroid sea stars with the ability of somatic fission as a clonal reproductive strategy. During fission, the animals tear themselves apart across their central disc, where the lost body parts are regenerated afterwards. Here, we have sequenced and subsequently analysed the transcriptome of the coelomic epithelium of a clonal Coscinasterias muricata specimen from New Zealand. Out of the total 389,768 raw reads, 11,344 contigs were assembled and grouped into functions. Raw read and assembled contig sequences are available at NCBI (BioSample: SAMN03371637), while the annotated assembly can be accessed through the project transcriptome browser (compgen.bio.ub.edu/gbrowse/starfish_transcriptome/). Our data is valuable for future detailed exploration of the coelomic epithelium functions as well as for a better understanding of sea star physiology.


Assuntos
Epitélio/metabolismo , Estrelas-do-Mar/metabolismo , Transcriptoma , Animais , Estrelas-do-Mar/genética
8.
Mar Genomics ; 23: 109-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26044617

RESUMO

BACKGROUND: In non-classical model species, Next Generation Sequencing increases the ability to analyze the expression of transcripts/genes. In this study, paired-end Illumina HiSeq sequencing technology has been employed to describe a larval transcriptome generated from 64 h post-fertilization pluteus larvae of the brittle star Amphiura filiformis. We focused our analysis on the detection of actors involved in the opsin based light perception, respectively the opsins and the phototransduction actors. METHODS & RESULTS: In this research, about 47 million high quality reads were generated and 86,572 total unigenes were predicted after de novo assembly. Of all the larval unigenes, 18% show significant matches with reference online databases. 46% of annotated larval unigenes were significantly similar to transcripts from the purple sea urchin. COG, GO and KEGG analyses were performed on predicted unigenes. Regarding the opsin-based photoreception process, even if possible actors of ciliary and rhabdomeric phototransduction cascades were detected, no ciliary or rhabdomeric opsin was identified in these larvae. Additionally, partial non-visual RGR (retinal G protein coupled receptor) opsin mRNAs were identified,possibly indicating the presence of visual cycle reaction in early pluteus larvae. The eye morphogene Pax 6 was also identified in the pluteus transcriptome. CONCLUSIONS: Contrary to sea-urchin larvae, brittle star larvae appear to be characterized by an absence of visual-like opsins. These RNA-seq data also provide a useful resource for the echinoderm research community and researchers with an interest in larval biology.


Assuntos
Estrelas-do-Mar/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Simulação por Computador , Mapeamento de Sequências Contíguas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Larva/genética , Larva/metabolismo , Luz , Dados de Sequência Molecular , Opsinas/genética , Opsinas/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Filogenia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade da Espécie
9.
J Proteomics ; 112: 113-24, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25178173

RESUMO

The extensive arm regeneration of brittle stars following amputation is becoming increasingly recognized as a model system for understanding cellular differentiation and regeneration in a whole animal context. In this study we have used the emerging brittle star model Amphiura filiformis to investigate the initial step of the regeneration process- the early repair phase, at the transcriptome and proteome level. Arm tissues were collected at 1 and 3days post amputation and were analyzed for the differential expression at the transcript and proteome level. A total of 694 genes and 194 proteins were found undergoing differential expression during the initiation of regeneration process. Comparison of transcriptomic and proteomic analysis showed 23 genes/proteins commonly between them with 40% having similar expression patterns. Validation of 33 differentially regulated genes based on RTPCR showed 22 and 19 genes expression as similar to the transcriptome expression during the first and third day post amputation respectively. Based on cellular network and molecular pathway analysis it was found that the differentially regulated transcripts and proteins were involved in structural and developmental network pathways such as cytoskeleton remodeling, cell adhesion integrin and translation initiation pathways for the instigation of regeneration process in brittle star. BIOLOGICAL SIGNIFICANCE: This study identified various genes and proteins involved in brittle star arm regeneration based on high throughput transcriptomics and proteomics studies. In this study the genes and proteins associated with regeneration were validated and mapped for biological and molecular pathways involved in regeneration mechanism. This study will lead to discovery of marker associated with tissue or organ regeneration.


Assuntos
Perfilação da Expressão Gênica , Proteoma/metabolismo , Proteômica , Regeneração/fisiologia , Estrelas-do-Mar/fisiologia , Transcriptoma , Estruturas Animais/fisiologia , Animais
11.
BMC Genomics ; 15: 1035, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429842

RESUMO

BACKGROUND: In metazoans, opsins are photosensitive proteins involved in both vision and non-visual photoreception. Echinoderms have no well-defined eyes but several opsin genes were found in the purple sea urchin (Strongylocentrotus purpuratus) genome. Molecular data are lacking for other echinoderm classes although many species are known to be light sensitive. RESULTS: In this study focused on the European brittle star Amphiura filiformis, we first highlighted a blue-green light sensitivity using a behavioural approach. We then identified 13 new putative opsin genes against eight bona fide opsin genes in the genome of S. purpuratus. Six opsins were included in the rhabdomeric opsin group (r-opsins). In addition, one putative ciliary opsin (c-opsin), showing high similarity with the c-opsin of S. purpuratus (Sp-opsin 1), one Go opsin similar to Sp-opsins 3.1 and 3.2, two basal-branch opsins similar to Sp-opsins 2 and 5, and two neuropsins similar to Sp-opsin 8, were identified. Finally, two sequences from one putative RGR opsin similar to Sp-opsin 7 were also detected. Adult arm transcriptome analysis pinpointed opsin mRNAs corresponding to one r-opsin, one neuropsin and the homologue of Sp-opsin 2. Opsin phylogeny was determined by maximum likelihood and Bayesian analyses. Using antibodies designed against c- and r-opsins from S. purpuratus, we detected putative photoreceptor cells mainly in spines and tube feet of A. filiformis, respectively. The r-opsin expression pattern is similar to the one reported in S. purpuratus with cells labelled at the tip and at the base of the tube feet. In addition, r-opsin positive cells were also identified in the radial nerve of the arm. C-opsins positive cells, expressed in pedicellariae, spines, tube feet and epidermis in S. purpuratus were observed at the level of the spine stroma in the brittle star. CONCLUSION: Light perception in A. filiformis seems to be mediated by opsins (c- and r-) in, at least, spines, tube feet and in the radial nerve cord. Other non-visual opsin types could participate to the light perception process indicating a complex expression pattern of opsins in this infaunal brittle star.


Assuntos
Variação Genética , Opsinas/genética , Sequência de Aminoácidos , Animais , Comportamento Animal , Expressão Gênica , Genômica , Dados de Sequência Molecular , Opsinas/química , Opsinas/metabolismo , Filogenia
12.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850925

RESUMO

While some aspects of the phylogeny of the five living echinoderm classes are clear, the position of the ophiuroids (brittlestars) relative to asteroids (starfish), echinoids (sea urchins) and holothurians (sea cucumbers) is controversial. Ophiuroids have a pluteus-type larva in common with echinoids giving some support to an ophiuroid/echinoid/holothurian clade named Cryptosyringida. Most molecular phylogenetic studies, however, support an ophiuroid/asteroid clade (Asterozoa) implying either convergent evolution of the pluteus or reversals to an auricularia-type larva in asteroids and holothurians. A recent study of 10 genes from four of the five echinoderm classes used 'phylogenetic signal dissection' to separate alignment positions into subsets of (i) suboptimal, heterogeneously evolving sites (invariant plus rapidly changing) and (ii) the remaining optimal, homogeneously evolving sites. Along with most previous molecular phylogenetic studies, their set of heterogeneous sites, expected to be more prone to systematic error, support Asterozoa. The homogeneous sites, in contrast, support an ophiuroid/echinoid grouping, consistent with the cryptosyringid clade, leading them to posit homology of the ophiopluteus and echinopluteus. Our new dataset comprises 219 genes from all echinoderm classes; analyses using probabilistic Bayesian phylogenetic methods strongly support Asterozoa. The most reliable, slowly evolving quartile of genes also gives highest support for Asterozoa; this support diminishes in second and third quartiles and the fastest changing quartile places the ophiuroids close to the root. Using phylogenetic signal dissection, we find heterogenous sites support an unlikely grouping of Ophiuroidea + Holothuria while homogeneous sites again strongly support Asterozoa. Our large and taxonomically complete dataset finds no support for the cryptosyringid hypothesis; in showing strong support for the Asterozoa, our preferred topology leaves the question of homology of pluteus larvae open.


Assuntos
Equinodermos/classificação , Equinodermos/genética , Genoma , Filogenia , Animais , Evolução Biológica , Equinodermos/crescimento & desenvolvimento , Evolução Molecular , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência de Proteína
13.
J Exp Biol ; 217(Pt 13): 2411-21, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24737772

RESUMO

Seawater acidification due to anthropogenic release of CO2 as well as the potential leakage of pure CO2 from sub-seabed carbon capture storage (CCS) sites may impose a serious threat to marine organisms. Although infaunal organisms can be expected to be particularly impacted by decreases in seawater pH, as a result of naturally acidified conditions in benthic habitats, information regarding physiological and behavioral responses is still scarce. Determination of PO2 and P(CO2) gradients within burrows of the brittlestar Amphiura filiformis during environmental hypercapnia demonstrated that besides hypoxic conditions, increases of environmental P(CO2) are additive to the already high P(CO2) (up to 0.08 kPa) within the burrows. In response to up to 4 weeks exposure to pH 7.3 (0.3 kPa P(CO2)) and pH 7.0 (0.6 kPa P(CO2)), metabolic rates of A. filiformis were significantly reduced in pH 7.0 treatments, accompanied by increased ammonium excretion rates. Gene expression analyses demonstrated significant reductions of acid-base (NBCe and AQP9) and metabolic (G6PDH, LDH) genes. Determination of extracellular acid-base status indicated an uncompensated acidosis in CO2-treated animals, which could explain the depressed metabolic rates. Metabolic depression is associated with a retraction of filter feeding arms into sediment burrows. Regeneration of lost arm tissues following traumatic amputation is associated with significant increases in metabolic rate, and hypercapnic conditions (pH 7.0, 0.6 kPa) dramatically reduce the metabolic scope for regeneration, reflected in an 80% reduction in regeneration rate. Thus, the present work demonstrates that elevated seawater P(CO2) significantly affects the environment and the physiology of infaunal organisms like A. filiformis.


Assuntos
Dióxido de Carbono/análise , Equinodermos/fisiologia , Água do Mar/química , Sequência de Aminoácidos , Animais , Mudança Climática , Equinodermos/genética , Metabolismo Energético , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Alinhamento de Sequência
14.
J Exp Biol ; 217(Pt 5): 711-7, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24574386

RESUMO

As a consequence of increasing atmospheric CO2, the world's oceans are becoming warmer and more acidic. Whilst the ecological effects of these changes are poorly understood, it has been suggested that fish performance including growth will be reduced mainly as a result of limitations in oxygen transport capacity. Contrary to the predictions given by the oxygen- and capacity-limited thermal tolerance hypothesis, we show that aerobic scope and cardiac performance of Atlantic halibut (Hippoglossus hippoglossus) increase following 14-16 weeks exposure to elevated temperatures and even more so in combination with CO2-acidified seawater. However, the increase does not translate into improved growth, demonstrating that oxygen uptake is not the limiting factor for growth performance at high temperatures. Instead, long-term exposure to CO2-acidified seawater reduces growth at temperatures that are frequently encountered by this species in nature, indicating that elevated atmospheric CO2 levels may have serious implications on fish populations in the future.


Assuntos
Mudança Climática , Linguado/fisiologia , Animais , Regulação da Temperatura Corporal , Dióxido de Carbono/metabolismo , Linguado/crescimento & desenvolvimento , Temperatura Alta , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo
15.
Glycobiology ; 24(2): 195-207, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24253764

RESUMO

Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.


Assuntos
Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/farmacologia , Dermatan Sulfato/isolamento & purificação , Dermatan Sulfato/farmacologia , Equinodermos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Animais , Células CHO , Sulfatos de Condroitina/química , Cricetinae , Cricetulus , Dermatan Sulfato/química , Sinergismo Farmacológico , Glicosaminoglicanos/química , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
Science ; 317(5837): 507-10, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17656722

RESUMO

The construction of multicellular organisms depends on stem cells-cells that can both regenerate and produce daughter cells that undergo differentiation. Here, we show that the gaseous messenger ethylene modulates cell division in the cells of the quiescent center, which act as a source of stem cells in the seedling root. The cells formed through these ethylene-induced divisions express quiescent center-specific genes and can repress differentiation of surrounding initial cells, showing that quiescence is not required for these cells to signal to adjacent stem cells. We propose that ethylene is part of a signaling pathway that modulates cell division in the quiescent center in the stem cell niche during the postembryonic development of the root system.


Assuntos
Arabidopsis/citologia , Divisão Celular , Etilenos/metabolismo , Raízes de Plantas/citologia , Células-Tronco/citologia , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Etilenos/biossíntese , Expressão Gênica , Genes de Plantas , Glicina/análogos & derivados , Glicina/farmacologia , Ácidos Indolacéticos/metabolismo , Mutação , Ácidos Naftalenoacéticos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...