Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(2): 445-455, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37410904

RESUMO

Older adults are at greater risk for heat-related morbidity and mortality, due in part to age-related reductions in heat dissipating capabilities. Previous studies investigating the impact of age on responses to heat stress used approaches that lack activities of daily living and therefore may not accurately depict the thermal/physiological strain that would occur during actual heatwaves. We sought to compare the responses of young (18-39 yr) and older (≥65 yr) adults exposed to two extreme heat simulations. Healthy young (n = 20) and older (n = 20) participants underwent two 3-h extreme heat exposures on different days: 1) DRY (47°C and 15% humidity) and 2) HUMID (41°C and 40% humidity). To mimic heat generation comparable with activities of daily living, participants performed 5-min bouts of light physical activity dispersed throughout the heat exposure. Measurements included core and skin temperatures, heart rate, blood pressure, local and whole body sweat rate, forearm blood flow, and perceptual responses. Δ core temperature (Young: 0.68 ± 0.27°C vs. Older: 1.37 ± 0.42°C; P < 0.001) and ending core temperature (Young: 37.81 ± 0.26°C vs. Older: 38.15 ± 0.43°C; P = 0.005) were greater in the older cohort during the DRY condition. Δ core temperature (Young: 0.58 ± 0.25°C vs. Older: 1.02 ± 0.32°C; P < 0.001), but not ending core temperature (Young: 37.67 ± 0.34°C vs. Older: 37.83 ± 0.35°C; P = 0.151), was higher in the older cohort during the HUMID condition. We demonstrated that older adults have diminished thermoregulatory responses to heat stress with accompanying activities of daily living. These findings corroborate previous reports and confirm epidemiological data showing that older adults are at a greater risk for hyperthermia.NEW & NOTEWORTHY Using an experimental model of extreme heat exposure that incorporates brief periods of light physical activity to simulate activities of daily living, the extent of thermal strain reported herein more accurately represents what would occur during actual heatwave conditions. Despite matching metabolic heat generation and environmental conditions, we show that older adults have augmented core temperature responses, likely due to age-related reductions in heat dissipating mechanisms.


Assuntos
Atividades Cotidianas , Calor Extremo , Humanos , Idoso , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Sudorese , Temperatura Corporal/fisiologia
2.
Am J Physiol Heart Circ Physiol ; 323(1): H223-H234, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714174

RESUMO

Our knowledge about how low-dose (analgesic) morphine affects autonomic cardiovascular regulation is primarily limited to animal experiments. Notably, it is unknown if low-dose morphine affects human autonomic cardiovascular responses during painful stimuli in conscious humans. Therefore, we tested the hypothesis that low-dose morphine reduces perceived pain and subsequent sympathetic and cardiovascular responses in humans during an experimental noxious stimulus. Twenty-nine participants (14 females/15 males; 29 ± 6 yr; 26 ± 4 kg·m-2, means ± SD) completed this randomized, crossover, placebo-controlled trial during two laboratory visits. During each visit, participants completed a cold pressor test (CPT; hand in ∼0.4°C ice bath for 2 min) before and ∼35 min after drug/placebo administration (5 mg iv morphine or saline). We compared pain perception (100 mm visual analog scale), muscle sympathetic nerve activity (MSNA; microneurography; 14 paired recordings), and beat-to-beat blood pressure (BP; photoplethysmography) between trials (at both pre- and postdrug/placebo time points) using paired, two-tailed t tests. Before drug/placebo infusion, perceived pain (P = 0.92), ΔMSNA burst frequency (n = 14, P = 0.21), and Δmean BP (P = 0.39) during the CPT were not different between trials. After the drug/placebo infusion, morphine versus placebo attenuated perceived pain (morphine: 43 ± 20 vs. placebo: 57 ± 24 mm, P < 0.001) and Δmean BP (morphine: 10 ± 7 vs. placebo: 13 ± 8 mmHg, P = 0.003), but not ΔMSNA burst frequency (morphine: 10 ± 11 vs. placebo: 13 ± 11 bursts·min-1, P = 0.12), during the CPT. Reductions in pain perception and Δmean BP were only weakly related (r = 0.34, P = 0.07; postmorphine CPT minus postplacebo CPT). These data provide valuable information regarding how low-dose morphine affects autonomic cardiovascular responses during an experimental painful stimulus.NEW & NOTEWORTHY In this randomized, crossover, placebo-controlled trial, we found that low-dose morphine administration reduced pain perception and blood pressure responses during the cold pressor test via attenuated increases in heart rate and cardiac output. We also determined that muscle sympathetic outflow responses during the cold pressor test seem to be unaffected by low-dose morphine administration. Finally, our exploratory analysis suggests that biological sex does not influence morphine-induced antinociception in healthy adults.


Assuntos
Morfina , Sistema Nervoso Simpático , Pressão Sanguínea/fisiologia , Temperatura Baixa , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Morfina/farmacologia , Músculo Esquelético/inervação , Percepção da Dor
3.
Am J Physiol Heart Circ Physiol ; 323(1): H89-H99, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452317

RESUMO

Hemorrhage is a leading cause of preventable battlefield and civilian trauma deaths. Low-dose (i.e., an analgesic dose) morphine is recommended for use in the prehospital (i.e., field) setting. Morphine administration reduces hemorrhagic tolerance in rodents. However, it is unknown whether morphine impairs autonomic cardiovascular regulation and consequently reduces hemorrhagic tolerance in humans. Thus, the purpose of this study was to test the hypothesis that low-dose morphine reduces hemorrhagic tolerance in conscious humans. Thirty adults (15 women/15 men; 29 ± 6 yr; 26 ± 4 kg·m-2, means ± SD) completed this randomized, crossover, double-blinded, placebo-controlled trial. One minute after intravenous administration of morphine (5 mg) or placebo (saline), we used a presyncopal limited progressive lower-body negative pressure (LBNP) protocol to determine hemorrhagic tolerance. Hemorrhagic tolerance was quantified as a cumulative stress index (mmHg·min), which was compared between trials using a Wilcoxon matched-pairs signed-rank test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat blood pressure (photoplethysmography) during the LBNP test using mixed-effects analyses [time (LBNP stage) × trial]. Median LBNP tolerance was lower during morphine trials (placebo: 692 [473-997] vs. morphine: 385 [251-728] mmHg·min, P < 0.001, CI: -394 to -128). Systolic blood pressure was 8 mmHg lower during moderate central hypovolemia during morphine trials (post hoc P = 0.02; time: P < 0.001, trial: P = 0.13, interaction: P = 0.006). MSNA burst frequency responses were not different between trials (time: P < 0.001, trial: P = 0.80, interaction: P = 0.51). These data demonstrate that low-dose morphine reduces hemorrhagic tolerance in conscious humans. Thus, morphine is not an ideal analgesic for a hemorrhaging individual in the prehospital setting.NEW & NOTEWORTHY In this randomized, crossover, placebo-controlled trial, we found that tolerance to simulated hemorrhage was lower after low-dose morphine administration. Such reductions in hemorrhagic tolerance were observed without differences in MSNA burst frequency responses between morphine and placebo trials. These data, the first to be obtained in conscious humans, demonstrate that low-dose morphine reduces hemorrhagic tolerance. Thus, morphine is not an ideal analgesic for a hemorrhaging individual in the prehospital setting.


Assuntos
Hipovolemia , Morfina , Pressão Sanguínea , Feminino , Frequência Cardíaca , Hemorragia/induzido quimicamente , Humanos , Pressão Negativa da Região Corporal Inferior , Morfina/farmacologia , Músculo Esquelético/inervação , Músculos , Sistema Nervoso Simpático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...