Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8000): 752-758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326617

RESUMO

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

2.
Nat Mater ; 22(5): 576-582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36928382

RESUMO

Quantum materials can display physical phenomena rooted in the geometry of electronic wavefunctions. The corresponding geometric tensor is characterized by an emergent field known as the Berry curvature (BC). Large BCs typically arise when electronic states with different spin, orbital or sublattice quantum numbers hybridize at finite crystal momentum. In all the materials known to date, the BC is triggered by the hybridization of a single type of quantum number. Here we report the discovery of the first material system having both spin- and orbital-sourced BC: LaAlO3/SrTiO3 interfaces grown along the [111] direction. We independently detect these two sources and probe the BC associated to the spin quantum number through the measurements of an anomalous planar Hall effect. The observation of a nonlinear Hall effect with time-reversal symmetry signals large orbital-mediated BC dipoles. The coexistence of different forms of BC enables the combination of spintronic and optoelectronic functionalities in a single material.

3.
Nanoscale Horiz ; 8(2): 297, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36602301

RESUMO

Correction for 'Magnetoconductance modulations due to interlayer tunneling in radial superlattices' by Yu-Jie Zhong et al., Nanoscale Horiz., 2022, 7, 168-173, https://doi.org/10.1039/D1NH00449B.

4.
Nanoscale Horiz ; 7(2): 168-173, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34982086

RESUMO

Radial superlattices are nanostructured materials obtained by rolling up thin solid films into spiral-like tubular structures. The formation of these "high-order" superlattices from two-dimensional crystals or ultrathin films is expected to result in a transition of transport characteristics from two-dimensional to one-dimensional. Here, we show that a transport hallmark of radial superlattices is the appearance of magnetoconductance modulations in the presence of externally applied axial magnetic fields. This phenomenon critically relies on electronic interlayer tunneling processes that activate an unconventional Aharonov-Bohm-like effect. Using a combination of density functional theory calculations and low-energy continuum models, we determine the electronic states of a paradigmatic single-material radial superlattice - a two-winding carbon nanoscroll - and indeed show momentum-dependent oscillations of the magnetic states in the axial configuration, which we demonstrate to be entirely due to hopping between the two windings of the spiral-shaped scroll.

5.
Nature ; 589(7842): 356-357, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473222
6.
Phys Rev Lett ; 123(19): 196403, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765194

RESUMO

It has been recently established that optoelectronic and nonlinear transport experiments can give direct access to the dipole moment of the Berry curvature in nonmagnetic and noncentrosymmetric materials. Thus far, nonvanishing Berry curvature dipoles have been shown to exist in materials with substantial spin-orbit coupling where low-energy Dirac quasiparticles form tilted cones. Here, we prove that this topological effect does emerge in two-dimensional Dirac materials even in the complete absence of spin-orbit coupling. In these systems, it is the warping of the Fermi surface that triggers sizable Berry dipoles. We show indeed that uniaxially strained monolayer and bilayer graphene, with substrate-induced and gate-induced band gaps, respectively, are characterized by Berry curvature dipoles comparable in strength to those observed in monolayer and bilayer transition metal dichalcogenides.

7.
Nano Lett ; 19(10): 6839-6844, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518136

RESUMO

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with a higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can be used to reach an independent tuning of spin transport and charge transport characteristics. These results laid the foundation for the design of efficient pure spin current-based electronics, which can be integrated in complex three-dimensional architectures.

8.
Phys Rev Lett ; 122(18): 186801, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144876

RESUMO

We theoretically show that IV-VI semiconducting compounds with low-temperature rhombohedral crystal structure represent a new potential platform for topological semimetals. By means of minimal k·p models, we find that the two-step structural symmetry reduction of the high-temperature rocksalt crystal structure, comprising a rhombohedral distortion along the [111] direction followed by a relative shift of the cation and anion sublattices, gives rise to topologically protected Weyl semimetal and nodal line semimetal phases. We derive general expressions for the nodal features and apply our results to SnTe, showing explicitly how Weyl points and nodal lines emerge in this system. Experimentally, the topological semimetals could potentially be realized in the low-temperature ferroelectric phase of SnTe, GeTe, and related alloys.

9.
Phys Rev Lett ; 119(7): 076801, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949688

RESUMO

The hallmark of Weyl semimetals is the existence of open constant-energy contours on their surface-the so-called Fermi arcs-connecting Weyl points. Here, we show that, for time-reversal symmetric realizations of Weyl semimetals, these Fermi arcs, in many cases, coexist with closed Fermi pockets originating from surface Dirac cones pinned to time-reversal invariant momenta. The existence of Fermi pockets is required for certain Fermi-arc connectivities due to additional restrictions imposed by the six Z_{2} topological invariants characterizing a generic time-reversal invariant Weyl semimetal. We show that a change of the Fermi-arc connectivity generally leads to a different topology of the surface Fermi surface and identify the half-Heusler compound LaPtBi under in-plane compressive strain as a material that realizes this surface Lifshitz transition. We also discuss universal features of this coexistence in quasiparticle interference spectra.

10.
Nano Lett ; 17(5): 3076-3080, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394625

RESUMO

Snake orbits are trajectories of charge carriers curving back and forth that form at an interface where either the magnetic field direction or the charge carrier type are inverted. In ballistic samples, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic fields. Here we show that signatures of snake orbits can also be found in the opposite diffusive transport regime. We illustrate this by studying the classical magnetotransport properties of carbon tubular structures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls, the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.

11.
Phys Rev Lett ; 115(21): 216805, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26636866

RESUMO

The Hofstadter model is a simple yet powerful Hamiltonian to study quantum Hall physics in a lattice system, manifesting its essential topological states. Lattice dimerization in the Hofstadter model opens an energy gap at half filling. Here we show that even if the ensuing insulator has a Chern number equal to zero, concomitantly a doublet of edge states appear that are pinned at specific momenta. We demonstrate that these states are topologically protected by inversion symmetry in specific one-dimensional cuts in momentum space, define and calculate the corresponding invariants, and identify a platform for the experimental detection of these novel topological states.

12.
Phys Rev Lett ; 114(15): 150502, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25933298

RESUMO

We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

13.
Phys Rev Lett ; 115(25): 256801, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722937

RESUMO

We prove that curvature effects in low-dimensional nanomaterials can promote the generation of topological states of matter by considering the paradigmatic example of quantum wires with Rashba spin-orbit coupling, which are bent in a nanoscale periodic serpentine structure. The effect of the periodic curvature generally results in the appearance of insulating phases with a corresponding novel butterfly spectrum characterized by the formation of finite measure complex regions of forbidden energies. When the Fermi energy lies in the gaps, the system displays localized end states protected by topology. We further show that for certain superstructure periods the system possesses topologically nontrivial insulating phases at half filling. Our results suggest that the local curvature and the topology of the electronic states are inextricably intertwined in geometrically deformed nanomaterials.

14.
Phys Rev Lett ; 113(22): 227205, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494087

RESUMO

We establish theoretically that in nonmagnetic semiconducting bilayer or multilayer thin film systems rolled up into compact quasi-one-dimensional nanoarchitectures, the ballistic magnetoresistance is very anisotropic: conductances depend strongly on the direction of an externally applied magnetic field. This phenomenon originates from the curved open geometry of rolled-up nanotubes, which leads to a tunability of the number of quasi-one-dimensional magnetic subbands crossing the Fermi energy. The experimental significance of this phenomenon is illustrated by a sizable anisotropy that scales with the inverse of the winding number, and persists up to a critical temperature that can be strongly enhanced by increasing the strength of the external magnetic field or the characteristic radius of curvature, and can reach room temperature.

15.
Phys Rev Lett ; 111(14): 146801, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138261

RESUMO

Combining an analytical and numerical approach we investigate the dispersion of the topologically protected spin-filtered edge states of the quantum spin Hall state on honeycomb and ruby nets with zigzag (ZZ) and armchair (AC) edges. We show that the Fermi velocity of the helical edge states on ZZ edges increases linearly with the strength of the spin-orbit coupling (SOC) whereas for AC edges the Fermi velocity is independent of the SOC. Also the decay length of edge states into the bulk is dramatically different for AC and ZZ edges, displaying an inverse functional dependence on the SOC.

16.
Nat Mater ; 12(5): 422-5, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475262

RESUMO

Commonly, materials are classified as either electrical conductors or insulators. The theoretical discovery of topological insulators has fundamentally challenged this dichotomy. In a topological insulator, the spin-orbit interaction generates a non-trivial topology of the electronic band structure dictating that its bulk is perfectly insulating, whereas its surface is fully conducting. The first topological insulator candidate material put forward--graphene--is of limited practical use because its weak spin-orbit interactions produce a bandgap of ~0.01 K. Recent reexaminations of Bi2Se3 and Bi2Te3, however, have firmly categorized these materials as strong three-dimensional topological insulators. We have synthesized the first bulk material belonging to an entirely different, weak, topological class, built from stacks of two-dimensional topological insulators: Bi14Rh3I9. Its Bi-Rh sheets are graphene analogues, but with a honeycomb net composed of RhBi8 cubes rather than carbon atoms. The strong bismuth-related spin-orbit interaction renders each graphene-like layer a topological insulator with a 2,400 K bandgap.

17.
Phys Rev Lett ; 109(10): 107601, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005326

RESUMO

With a combined ab initio density functional and model Hamiltonian approach we establish that in the recently discovered multiferroic phase of the manganite Sr(1/2)Ba(1/2)MnO3 the polar distortion of Mn and O ions is stabilized via enhanced in-plane Mn-O hybridizations. The magnetic superexchange interaction is very sensitive to the polar bond-bending distortion, and we find that this dependence directly causes a strong magnetoelectric coupling. This novel mechanism for multiferroicity is consistent with the experimentally observed reduced ferroelectric polarization upon the onset of magnetic ordering.

18.
Nat Commun ; 2: 398, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21772269

RESUMO

In several materials, unconventional superconductivity appears nearby a quantum phase transition where long-range magnetic order vanishes as a function of a control parameter like charge doping, pressure or magnetic field. The nature of the quantum phase transition is of key relevance, because continuous transitions are expected to favour superconductivity, due to strong fluctuations. Discontinuous transitions, on the other hand, are not expected to have a similar role. Here we determine the nature of the magnetic quantum phase transition, which occurs as a function of doping, in the iron-based superconductor LaFeAsO(1-x)F(x). We use constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The outcome is intriguing, as this material turns out to be remarkably close to a quantum tricritical point, where the transition changes from continuous to discontinuous, and several susceptibilities diverge simultaneously. We discuss the consequences for superconductivity and the phase diagram.


Assuntos
Arsenicais/química , Condutividade Elétrica , Ferro/química , Lantânio/química , Teoria Quântica , Magnetismo , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...