Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 102, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013238

RESUMO

The systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided. Here, we extract 1.7 million helices from the PDB and compile them into a database (Therapeutic Peptide Design database; TP-DB) that allows queries of compounded patterns to facilitate the identification of sequence motifs of helical structures. We show how TP-DB helps us identify a known purification-tag-specific antibody that can be repurposed into a diagnostic kit for Helicobacter pylori. We also show how the database can be used to design a new antimicrobial peptide that shows better Candida albicans clearance and lower hemolysis than its template homologs. Finally, we demonstrate how TP-DB can suggest point mutations in helical peptide blockers to prevent a targeted tumorigenic protein-protein interaction. TP-DB is made available at http://dyn.life.nthu.edu.tw/design/ .


Assuntos
Aminoácidos/química , Peptídeos Antimicrobianos/química , Antineoplásicos/química , Software , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bases de Dados de Proteínas , Desenho de Fármacos/métodos , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Relação Estrutura-Atividade
2.
Elife ; 102021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779768

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth, and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia-inducible factor (HIF) family members and positively regulated HIF1α activity in TNBC. Integrated ChIP-seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1α on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1α coregulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581, and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1α signaling, therefore serving as a potential therapeutic target for TNBC.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição/metabolismo
3.
Pharmaceutics ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206631

RESUMO

Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic.

4.
Bioinformatics ; 36(2): 449-461, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31347658

RESUMO

MOTIVATION: Quaternary structure determination for transmembrane/soluble proteins requires a reliable computational protocol that leverages observed distance restraints and/or cyclic symmetry (Cn symmetry) found in most homo-oligomeric transmembrane proteins. RESULTS: We survey 118 X-ray crystallographically solved structures of homo-oligomeric transmembrane proteins (HoTPs) and find that ∼97% are Cn symmetric. Given the prevalence of Cn symmetric HoTPs and the benefits of incorporating geometry restraints in aiding quaternary structure determination, we introduce two new filters, the distance-restraints (DR) and the Symmetry-Imposed Packing (SIP) filters. SIP relies on a new method that can rebuild the closest ideal Cn symmetric complex from docking poses containing a homo-dimer without prior knowledge of the number (n) of monomers. Using only the geometrical filter, SIP, near-native poses of 7 HoTPs in their monomeric states can be correctly identified in the top-10 for 71% of all cases, or 29% among 31 HoTP structures obtained through homology modeling, while ZDOCK alone returns 14 and 3%, respectively. When the n is given, the optional n-mer filter is applied with SIP and returns the near-native poses for 76% of the test set within the top-10, outperforming M-ZDOCK's 55% and Sam's 47%. While applying only SIP to three HoTPs that comes with distance restraints, we found the near-native poses were ranked 1st, 1st and 10th among 54 000 possible decoys. The results are further improved to 1st, 1st and 3rd when both DR and SIP filters are used. By applying only DR, a soluble system with distance restraints is recovered at the 1st-ranked pose. AVAILABILITY AND IMPLEMENTATION: https://github.com/capslockwizard/drsip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Químicos , Modelos Moleculares , Conformação Proteica
5.
Sci Rep ; 9(1): 17096, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745103

RESUMO

A strategy in the discovery of anti-tuberculosis (anti-TB) drug involves targeting the enzymes involved in the biosynthesis of Mycobacterium tuberculosis' (Mtb) cell wall. One of these enzymes is Galactofuranosyltransferase 2 (GlfT2) that catalyzes the elongation of the galactan chain of Mtb cell wall. Studies targeting GlfT2 have so far produced compounds showing minimal inhibitory activity. With the current challenge of designing potential GlfT2 inhibitors with high inhibition activity, computational methods such as molecular docking, receptor-ligand mapping, molecular dynamics, and Three-Dimensional-Quantitative Structure-Activity Relationship (3D-QSAR) were utilized to deduce the interactions of the reported compounds with the target enzyme and enabling the design of more potent GlfT2 inhibitors. Molecular docking studies showed that the synthesized compounds have binding energy values between -3.00 to -6.00 kcal mol-1. Two compounds, #27 and #31, have registered binding energy values of -8.32 ± 0.01, and -8.08 ± 0.01 kcal mol-1, respectively. These compounds were synthesized as UDP-Galactopyranose mutase (UGM) inhibitors and could possibly inhibit GlfT2. Interestingly, the analogs of the known disaccharide substrate, compounds #1-4, have binding energy range of -10.00 to -19.00 kcal mol-1. The synthesized and newly designed compounds were subjected to 3D-QSAR to further design compounds with effective interaction within the active site. Results showed improved binding energy from -6.00 to -8.00 kcal mol-1. A significant increase on the binding affinity was observed when modifying the aglycon part instead of the sugar moiety. Furthermore, these top hit compounds were subjected to in silico ADMETox evaluation. Compounds #31, #70, #71, #72, and #73 were found to pass the ADME evaluation and throughout the screening, only compound #31 passed the predicted toxicity evaluation. This work could pave the way in the design and synthesis of GlfT2 inhibitors through computer-aided drug design and can be used as an initial approach in identifying potential novel GlfT2 inhibitors with promising activity and low toxicity.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Galactosiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/enzimologia , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Inibidores Enzimáticos/química , Galactosiltransferases/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Testes de Toxicidade
6.
J Mol Graph Model ; 89: 250-260, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30933883

RESUMO

Drawbacks of industrially-used fructosyltransferases (FTs) such as low optimum temperature and low fructooligosaccharides (FOS) yield necessitates the search for engineered FTs that are highly thermostable and active. With the availability of the first plant FT crystal structure from Pachysandra terminalis (PDB ID: 3UGH), computer-aided protein engineering of plant FT is now feasible. To obtain insights on the effect of specific mutations i.e. disulfide bridge introduction, wild-type and mutant FTs were subjected to a 15 µs Martini Coarse-grained Molecular Dynamics (CGMD) simulations at 303 K and 334 K. We report here the five mutants, M31C-Q49C, L144C-S193C, P34C-W300C, S219C-L226C and V470C-S498C with enhanced thermostabilities and/or activities relative to the wild type. Interestingly, M31C-Q49C, which is located within the catalytic-carrying blade of the catalytic domain, has an activity enhancement at both temperatures. At 334 K, three mutations, L144C-S193C, P34C-W300C and V470C-S498C, achieved thermostability relative to the wild type. Intriguingly, both activity and stability enhancement exhibited only at 334 K can be achieved provided that the mutation is located either on the catalytic-carrying residue blade of the catalytic domain or on the non-catalytic domain. Our results suggest that V470C-S498C and L144C-S193C are promising mutants and that domain-specific approach may be exploited to customize enzyme properties.


Assuntos
Dissulfetos/química , Hexosiltransferases/química , Modelos Moleculares , Pachysandra/enzimologia , Termodinâmica , Sítios de Ligação , Estabilidade Enzimática , Hexosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...