Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antiviral Res ; 227: 105907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772503

RESUMO

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Animais , Humanos , Replicação Viral/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Ovinos , Farmacorresistência Viral , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética , Pulmão/virologia
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397115

RESUMO

Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Infecção por Zika virus/tratamento farmacológico , Modelos Moleculares , Antivirais/química , Proteínas não Estruturais Virais/metabolismo
3.
Bioorg Chem ; 143: 107035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199140

RESUMO

Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Metiltransferases/metabolismo , Metilação , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , SARS-CoV-2/metabolismo , RNA Viral , Zika virus/metabolismo
4.
Nucleic Acids Res ; 52(3): 1359-1373, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38015463

RESUMO

Viral RNA genomes are modified by epitranscriptomic marks, including 2'-O-methylation that is added by cellular or viral methyltransferases. 2'-O-Methylation modulates RNA structure, function and discrimination between self- and non-self-RNA by innate immune sensors such as RIG-I-like receptors. This is illustrated by human immunodeficiency virus type-1 (HIV-1) that decorates its RNA genome through hijacking the cellular FTSJ3 2'-O-methyltransferase, thereby limiting immune sensing and interferon production. However, the impact of such an RNA modification during viral genome replication is poorly understood. Here we show by performing endogenous reverse transcription on methylated or hypomethylated HIV-1 particles, that 2'-O-methylation negatively affects HIV-1 reverse transcriptase activity. Biochemical assays confirm that RNA 2'-O-methylation impedes reverse transcriptase activity, especially at low dNTP concentrations reflecting those in quiescent cells, by reducing nucleotide incorporation efficiency and impairing translocation. Mutagenesis highlights K70 as a critical amino acid for the reverse transcriptase to bypass 2'-O-methylation. Hence, the observed antiviral effect due to viral RNA 2'-O-methylation antagonizes the FTSJ3-mediated proviral effects, suggesting the fine-tuning of RNA methylation during viral replication.


Assuntos
Transcriptase Reversa do HIV , HIV-1 , Processamento Pós-Transcricional do RNA , RNA Viral , Replicação Viral , Humanos , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Nucleotídeos/metabolismo , Transcrição Reversa , RNA Viral/metabolismo
5.
Commun Biol ; 6(1): 1074, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865687

RESUMO

The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.


Assuntos
Vírus Sincicial Respiratório Humano , RNA Polimerase Dependente de RNA/química , Ligação Proteica , RNA/metabolismo , Nucleotídeos/metabolismo
6.
Antiviral Res ; 212: 105574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905944

RESUMO

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/tratamento farmacológico , Vírus da Dengue/fisiologia , Guanosina/farmacologia , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
7.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851554

RESUMO

The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.


Assuntos
Nucleoproteínas , Vírus Sincicial Respiratório Humano , Idoso , Lactente , Humanos , RNA Polimerase Dependente de RNA , Fatores de Transcrição , Anticorpos Monoclonais , Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA
9.
J Med Chem ; 65(8): 6231-6249, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439007

RESUMO

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (N7-guanine)-methyltransferase (N7-MTase) that catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine (SAM) cofactor to the N7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the N7-MTase nsp14. Molecular docking supported the structure-activity relationships of these inhibitors and a bisubstrate-based mechanism of action. The three most potent inhibitors significantly stabilized nsp14 (ΔTm ≈ 11 °C), and the best inhibitor demonstrated high selectivity for nsp14 over human RNA N7-MTase.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/virologia , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/química , Humanos , Metiltransferases , Simulação de Acoplamento Molecular , RNA Viral/genética , S-Adenosilmetionina , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Sulfonamidas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
10.
J Virol ; 96(8): e0012822, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343766

RESUMO

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Assuntos
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Furina/metabolismo , Células HeLa , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
11.
Rev. bras. educ. méd ; 46(1): e026, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360858

RESUMO

Abstract: Introduction: The Program Education through Work for Health (PEW-Health) was created in 2008 as a partnership between the Ministries of Health and Education, promoting the teaching-service-management-community integration, providing opportunities for professionals, students, teachers, and service users, in line with the needs of SUS, and having the topic of interprofessionality for its ninth edition (2019-2021). This report aims to share interprofessional learning based on the experience of a singular therapeutic project (STP) for a complex case within the PEW-Health activities of a university in the Midwest region, carried out in a Family Health Unit (FHU) in the municipality of Campo Grande, Mato Grosso do Sul (MS). Experience report: Students from a tutorial group of PEW-Health Interprofessionality participated in this experience, as well as preceptors, professionals from the Extended Nucleus of Family Health and Primary Care (ENFH-PC), and a tutor, who was a teacher in a Medical School. The STP was developed with an elderly patient with polypharmacy and the following chronic conditions: diabetes mellitus (DM), depression (DEP) and systemic arterial hypertension (SAH), monitored during the period from August 2019 to February 2020, prior to the COVID-19 pandemic, in a FHU in Campo Grande-MS, selected by the team due to the complexity of the case. Discussion: Through the STP, the group had the opportunity to evaluate, assist and perform practices to strengthen the patient's "happiness project". The STP allows team-patient intersubjectivity, focusing not only on the diseases, but on who they are. The carried-out home visits provided moments of listening for the performance of care in accordance with the needs, perceived and not perceived by the user. In the practice of STP, comprehensive care is provided, focused on the individual, showing the potential in continuing education and interprofessional teamwork, sharing knowledge, improving the sustainability of care and, consequently, qualifying health care, corroborating the results obtained in this study. Conclusion: Participation in the program allowed experiences that were previously absent during undergraduate school, such as contact with different health courses, practice in real SUS scenarios and application of concepts seen only in theory, such as humanized care and a comprehensive view, as well as communication with the team and the patient.


Resumo: Introdução: O Programa de Educação pelo Trabalho para a Saúde (PET-Saúde) surgiu em 2008, numa parceria entre o Ministério da Saúde e o Ministério da Educação, com o propósito de fomentar a integração ensino-serviço-gestão-comunidade e oportunizar vivências para profissionais, estudantes, professores e usuários dos serviços, em consonância com as necessidades do SUS. A nona edição (2019-2021) do programa teve como tema a interprofissionalidade. Este relato objetiva compartilhar a aprendizagem interprofissional a partir da experiência de um Projeto Terapêutico Singular (PTS) para um caso complexo dentro das atividades do PET-Saúde de uma universidade da Região Centro-Oeste, realizado em uma unidade de saúde da família (USF), em Campo Grande, em Mato Grosso do Sul (MS). Relato de experiência: Participaram desta experiência acadêmicas de um grupo tutorial do PET-Saúde Interprofissionalidade, preceptoras, profissionais do Núcleo Ampliado de Saúde da Família e Atenção Primária (Nasf-AP), e tutora, docente de uma Faculdade de Medicina. O PTS foi desenvolvido com paciente idosa, com polifarmácia, com as seguintes condições crônicas: diabetes mellitus (DM), depressão (DEP) e hipertensão arterial sistêmica (HAS). A paciente foi acompanhada durante o período de agosto de 2019 a fevereiro de 2020, anterior à pandemia da Covid-19, em uma USF, em Campo Grande-MS, selecionada pela equipe em virtude da complexidade do caso. Discussão: Por meio do PTS, o grupo teve a oportunidade de avaliar, auxiliar e executar práticas para fortalecer o "projeto de felicidade" da paciente. O PTS permite a intersubjetividade entre equipe e paciente, centrando-se não apenas nas doenças, mas também no indivíduo. As visitas domiciliares realizadas proporcionaram momentos de escuta para a condução do cuidado em conformidade às necessidades sentidas e não sentidas pela usuária. Na prática do PTS, presta-se cuidado integral, focado no indivíduo, de modo a apresentar as potencialidades na educação permanente e no trabalho em equipe interprofissional, compartilhar saberes, aprimorar a sustentabilidade do cuidado e, consequentemente, qualificar a assistência em saúde, corroborando os resultados obtidos nesta experiência. Conclusão: A participação no programa permitiu vivências antes ausentes na graduação, como o contato com os diferentes cursos da saúde, a prática nos cenários reais do SUS e a aplicação dos conceitos vistos apenas na teoria, como o atendimento humanizado e olhar integral, além da comunicação com a equipe e paciente.

12.
PLoS Pathog ; 17(5): e1009562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956914

RESUMO

Respiratory syncytial virus (RSV) is a negative sense single-stranded RNA virus and one of the main causes of severe lower respiratory tract infections in infants and young children. RSV RNA replication/transcription and capping are ensured by the viral Large (L) protein. The L protein contains a polymerase domain associated with a polyribonucleotidyl transferase domain in its N-terminus, and a methyltransferase (MTase) domain followed by the C-terminal domain (CTD) enriched in basic amino acids at its C-terminus. The MTase-CTD of Mononegavirales forms a clamp to accommodate RNA that is subsequently methylated on the cap structure and depending on the virus, on internal positions. These enzymatic activities are essential for efficient viral mRNA translation into proteins, and to prevent the recognition of uncapped viral RNA by innate immunity sensors. In this work, we demonstrated that the MTase-CTD of RSV, as well as the full-length L protein in complex with phosphoprotein (P), catalyzes the N7- and 2'-O-methylation of the cap structure of a short RNA sequence that corresponds to the 5' end of viral mRNA. Using different experimental systems, we showed that the RSV MTase-CTD methylates the cap structure with a preference for N7-methylation as first reaction. However, we did not observe cap-independent internal methylation, as recently evidenced for the Ebola virus MTase. We also found that at µM concentrations, sinefungin, a S-adenosylmethionine analogue, inhibits the MTase activity of the RSV L protein and of the MTase-CTD domain. Altogether, these results suggest that the RSV MTase domain specifically recognizes viral RNA decorated by a cap structure and catalyzes its methylation, which is required for translation and innate immune system subversion.


Assuntos
Metilação de DNA , Metiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Imunidade Inata , Metiltransferases/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
13.
Eur J Med Chem ; 201: 112557, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32563813

RESUMO

The spreading of new viruses is known to provoke global human health threat. The current COVID-19 pandemic caused by the recently emerged coronavirus SARS-CoV-2 is one significant and unfortunate example of what the world will have to face in the future with emerging viruses in absence of appropriate treatment. The discovery of potent and specific antiviral inhibitors and/or vaccines to fight these massive outbreaks is an urgent research priority. Enzymes involved in the capping pathway of viruses and more specifically RNA N7- or 2'O-methyltransferases (MTases) are now admitted as potential targets for antiviral chemotherapy. We designed bisubstrate inhibitors by mimicking the transition state of the 2'-O-methylation of the cap RNA in order to block viral 2'-O MTases. This work resulted in the synthesis of 16 adenine dinucleosides with both adenosines connected by various nitrogen-containing linkers. Unexpectedly, all the bisubstrate compounds were barely active against 2'-O MTases of several flaviviruses or SARS-CoV but surprisingly, seven of them showed efficient and specific inhibition against SARS-CoV N7-MTase (nsp14) in the micromolar to submicromolar range. The most active nsp14 inhibitor identified is as potent as but particularly more specific than the broad-spectrum MTase inhibitor, sinefungin. Molecular docking suggests that the inhibitor binds to a pocket formed by the S-adenosyl methionine (SAM) and cap RNA binding sites, conserved among SARS-CoV nsp14. These dinucleoside SAM analogs will serve as starting points for the development of next inhibitors for SARS-CoV-2 nsp14 N7-MTase.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Nucleosídeos/química , Pneumonia Viral/tratamento farmacológico , Capuzes de RNA/metabolismo , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenina/química , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Exorribonucleases/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
14.
Cell ; 179(1): 193-204.e14, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495574

RESUMO

Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.


Assuntos
Fosfoproteínas/ultraestrutura , RNA Polimerase Dependente de RNA/ultraestrutura , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/enzimologia , Proteínas Virais/ultraestrutura , Acetatos/química , Animais , Antivirais/química , Antivirais/uso terapêutico , Domínio Catalítico , Microscopia Crioeletrônica , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Quinolinas/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vacinas contra Vírus Sincicial Respiratório/química , Células Sf9 , Spodoptera , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Methods Mol Biol ; 1835: 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109648

RESUMO

To date, several sensitive methods, based on radiolabeled elements or sterically hindered fluorochrome groups, are usually employed to screen lipase and phospholipase A (PLA) activities. Here, a new ultraviolet spectrophotometric assay for lipase or PLA was developed using natural triglycerides or synthetic glycerophosphatidylcholines containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) purified from Aleurites fordii seed oil. The conjugated triene present in α-eleostearic acid constitutes an intrinsic chromophore and consequently confers strong UV absorption properties of this free fatty acid as well as of lipid substrates harboring it. The substrate was coated into the wells of a microplate, and the lipolytic activities were measured by the absorbance increase at 272 nm due to the transition of α-eleostearic acid moiety from the adsorbed to the soluble state. This continuous assay is compatible with a high-throughput screening method and can be applied specifically to the screening of new potential lipase, PLA1 and PLA2 inhibitors.


Assuntos
Ácidos Linolênicos/metabolismo , Lipase/metabolismo , Fosfolipases A/metabolismo , Espectrofotometria , Ativação Enzimática , Ensaios Enzimáticos/métodos , Lipase/química , Lipólise , Fosfolipases A/química , Óleos de Plantas/química , Espectrofotometria/métodos , Espectrofotometria/normas , Espectrofotometria Ultravioleta/métodos , Especificidade por Substrato
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 1006-1015, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859246

RESUMO

Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10 ng of enzymes, against 100 ng to 10 µg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.


Assuntos
Proteínas Fúngicas/química , Galactolipídeos/química , Lipase/química , Talaromyces/química , Ar/análise , Animais , Ácidos e Sais Biliares/química , Hidrolases de Éster Carboxílico/química , Ensaios Enzimáticos , Fusarium/química , Fusarium/enzimologia , Cobaias , Hidrólise , Cinética , Ácidos Linolênicos/química , Micelas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Especificidade por Substrato , Propriedades de Superfície , Talaromyces/enzimologia , Raios Ultravioleta , Água/química
17.
Rev. med. vet. (Bogota) ; (36): 135-144, ene.-jun. 2018.
Artigo em Espanhol | LILACS | ID: biblio-902160

RESUMO

Resumen Los modelos tradicionales de producción animal suponen un gran costo ambiental y económico. También existen consideraciones éticas alrededor del bienestar animal con base en ciertos esquemas productivos. Estos aspectos, junto al hecho del incremento esperado en la demanda de proteína animal, paralelo al crecimiento poblacional para 2050, obligan a la industria cárnica y al sector agropecuario a buscar técnicas alternativas de producción animal. La carne cultivada parece ser una opción viable y plausible para resolver muchos de estos retos. El artículo aborda el tema de la ingeniería de tejidos, enfocado en las ventajas y desventajas de la producción in vitro, como una posible línea de investigación futura para paliar el hambre y la inseguridad alimentaria de forma ambientalmente sostenible.


Abstract The traditional models of animal production imply a great environmental and economic cost. There are also ethical considerations around animal welfare based on certain production schemes. These aspects, together with an expected increase in the demand for animal protein, parallel to population growth by 2050, have forced the meat industry and the agricultural sector to look for alternative techniques of animal production. Cultured meat seems to be a viable and plausible option to solve many of these challenges. The article addresses the issue of tissue engineering, focusing on the advantages and disadvantages of in vitro production, as a possible line for future research, to alleviate hunger and food insecurity in an environmentally sustainable manner.


Resumo Os modelos tradicionais de produção animal supõem um grande custo ambiental e econômico. Também existem considerações éticas em quanto ao bem-estar animal com base em certos esquemas produtivos. Estes aspectos, junto ao fato do incremento esperado na demanda de proteína animal, paralelo ao crescimento populacional para 2050, obrigam a indústria de carnes e o setor agropecuário a buscar técnicas alternativas de produção animal. A carne cultivada parece ser uma opção viável e plausível para resolver muitos destes desafios. O artigo aborda o tema da engenharia de tecidos, com foco nas vantagens e desvantagens da produção in vitro, como uma possível linha de pesquisa futura para paliar a fome e a inseguridade alimentar de forma ambientalmente sustentável.

18.
Chem Phys Lipids ; 211: 66-76, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155085

RESUMO

The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Ácidos e Sais Biliares/metabolismo , Lipase/metabolismo , Micelas , Pâncreas/enzimologia , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Ácidos e Sais Biliares/química , Cobaias , Hidrólise , Lipase/análise , Lipase/química , Lipólise , Espectrofotometria Infravermelho
19.
Chem Phys Lipids ; 211: 77-85, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29137992

RESUMO

Usual methods for the continuous assay of lipolytic enzyme activities are mainly based on the titration of free fatty acids, surface pressure monitoring or spectrophotometry using substrates labeled with specific probes. These approaches only give a partial information on the chemistry of the lipolysis reaction and additional end-point analyses are often required to quantify both residual substrate and lipolysis products. We used transmission infrared (IR) spectroscopy to monitor simultaneously the hydrolysis of phospholipids by guinea pig pancreatic lipase-related protein 2 (GPLRP2) and the release of lipolysis products. The substrate (DPPC, 1,2-Dipalmitoyl phosphatidylcholine) was mixed with sodium taurodeoxycholate (NaTDC) to form mixed micelles in D2O buffer at pD 6 and 8. After hydrogen/deuterium exchange, DPPC hydrolysis by GPLRP2 (100nM) was monitored at 35°C in a liquid cell by recording IR spectra and time-course variations in the CO stretching region. These changes were correlated to variations in the concentrations of DPPC, lysophospholipids (lysoPC) and palmitic acid (Pam) using calibration curves established with these compounds individually mixed with NaTDC. We were thus able to quantify each compound and its time-course variations during the phospholipolysis reaction and to estimate the enzyme activity. To validate the IR analysis, variations in residual DPPC, lysoPC and Pam were also quantified by thin-layer chromatography coupled to densitometry and similar hydrolysis profiles were obtained using both methods. IR spectroscopy can therefore be used to monitor the enzymatic hydrolysis of phospholipids and obtain simultaneously chemical and physicochemical information on substrate and all reaction products (H-bonding, hydration, acyl chain mobility).


Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Lipase/metabolismo , Lipólise , Micelas , Pâncreas/enzimologia , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Cobaias , Hidrólise , Lipase/análise , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...