Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 109(33): 16127-31, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16853049

RESUMO

DNA polymerases are protein machines that processively incorporate complimentary nucleotides into a growing double-stranded DNA (ds-DNA). Single-base nucleotide incorporation rates have been determined by stalling and restarting various polymerases, but intrinsic processive rates have been difficult to obtain, particularly for polymerases with low processivity, such as the human immunodeficiency virus type 1 reverse transcriptase (HIV RT) polymerase. Here we find, using a new fluorescence-based single-molecule polymerization assay, that the intrinsic processive DNA-dependent polymerization of HIV RT is approximately Poissionian (i.e. each nucleotide is added sequentially) with a rate of about 100 bases per second at 21 degrees C. From the same experiments, based on the stepping statistics of polymerization, we also estimate the rates for HIV RT early termination and final release of completely replicated primer-template DNA. In addition, by measuring the rate of polymerization as a function of temperature, we have estimated the activation energy for processive nucleotide incorporation.


Assuntos
Replicação do DNA , DNA Viral/química , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1 , Humanos , Moldes Genéticos
2.
Inorg Chem ; 43(1): 132-41, 2004 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-14704060

RESUMO

This study addresses, in detail, the orbital nature and the extent of metal-metal communication in the lowest emitting triplet state of Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) (where 4,4'-bpy = 4,4'-bipyridine) as well as the symmetry of the lowest (3)MLCT manifold in comparison to that of the ground state. All spectral evidence points to (1). a (3)MLCT excited manifold localized between a single Re(I) corner and an adjacent bridging ligand, (2). a transient mixed-valence state that is completely localized between a single transiently oxidized Re center and the adjacent metals, and (3). a second-order charge transfer from a localized transiently reduced bridging ligand to the adjacent Re(I) center to which it is attached, effectively lowering its oxidation state. The orbital nature of the lowest (3)MLCT manifold is fully corroborated by a molecular orbital diagram derived from quantum chemical modeling studies, while the existence of the localization, localized mixed valency, and second-order charge transfer rely on spectral evidence alone. This work makes use of low-temperature time-resolved infrared (TRIR) techniques as well as a luminescence study. Many of the nuances of the luminescence and TRIR data interpretation are extracted from statistical analysis and quantum chemical modeling studies. The relative concentrations of the dominant conformers that exist for Re(4)(CO)(12)(4,4'-bpy)(4)Cl(4) have also been estimated from Boltzmann statistics.

3.
J Am Chem Soc ; 125(18): 5461-70, 2003 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-12720460

RESUMO

The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...