Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(2): 1437-1444, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503970

RESUMO

In this work, we explore the use of electrochemical methods (i.e., impedance) along with the arsenic-specific aptamer (ArsSApt) to fabricate and study the interfacial properties of an arsenic (As(III)) sensor. The ArsSApt layer was self-assembled on a gold substrate, and upon binding of As(III), a detectable change in the impedimetric signal was recorded because of conformational changes at the interfacial layer. These interfacial changes are linearly correlated with the concentration of arsenic present in the system. This target-induced signal was utilized for the selective detection of As(III) with a linear dynamic range of 0.05-10 ppm and minimum detectable concentrations of ca. 0.8 µM. The proposed system proved to be successful mainly because of the combination of a highly sensitive electrochemical platform and the recognized specificity of the ArsSApt toward its target molecule. Also, the interaction between the ArsSApt and the target molecule (i.e., arsenic) was explored in depth. The obtained results in this work are aimed at proving the development of a simple and environmentally benign sensor for the detection of As(III) as well as in elucidating the possible interactions between the ArsSApt and arsenic molecules.

2.
Environ Sci Technol ; 51(8): 4585-4595, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28318247

RESUMO

Herein, we study the feasibility of using nanocellulose (NC)-based composites with silver and platinum nanoparticles as additive materials to fabricate the support layer of thin film composite (TFC) membranes for water purification applications. In brief, the NC surface was chemically modified and then was decorated with silver and platinum nanoparticles, respectively, by chemical reduction. These metalized nanocellulose composites (MNC) were characterized by several techniques including: FTIR, XPS, TGA, XRD, and XANES to probe their integrity. Thereafter, we fabricated the MNC-TFC membranes and the support layer was modified to improve the membrane properties. The membranes were thoroughly characterized, and the performance was evaluated in forward osmosis (FO) mode with various feed solutions: nanopure water, urea, and wastewater samples. The fabricated membranes exhibited finger-like pore morphologies and varying pore sizes. Interestingly, higher water fluxes and solute rejection was obtained with the MNC-TFC membranes with wastewater samples. The overall approach of this work provides an effort to fabricated membranes with high water flux and enhanced selectivity.


Assuntos
Membranas Artificiais , Purificação da Água , Osmose , Soluções , Águas Residuárias/química
3.
ACS Omega ; 2(11): 7714-7722, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457328

RESUMO

The occurrence of contaminants of emerging concern (CECs) in water is an environmental issue that must be addressed to avoid damage to ecosystems and human health. Inspired by this current issue, in this work, we fabricated nanocellulose (NC) particles grafted with the block copolymer Jeffamine ED 600 (NC-Jeffamine) capable of adsorbing acetaminophen, sulfamethoxazole, and N,N-diethyl-meta-toluamide (DEET) from aqueous solution by electrostatic interactions. NC-Jeffamine composites were prepared by carboxylation of the NC surface via 2,2,6,6-tetramethyl-1-piperidinyloxy oxidation followed by the covalent attachment of Jeffamine using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysulfosuccinimide sodium salt reaction. The reaction was followed and confirmed by Fourier transform infrared and conductometric titration. The physical characterization was performed by thermogravimetric analysis, Brunauer-Emmett-Teller analysis, scanning electron microscopy, dynamic light scattering, and Z-potential analysis. This material was used to study the adsorption profile of three CECs in deionized water, namely, acetaminophen, sulfamethoxazole, and DEET. The adsorption isotherms were obtained at pH 3, 7, and 9, where the best adsorption results corresponded to pH 9 because of the uniform dispersion of the adsorbate in solution. A computational study based on the density functional theory determined that the possible interactions of the CECs with the adsorbent material were related to hydrogen bonds and/or van der Waals forces. The calculated binding energies were used as a descriptor to characterize the optimum adsorption site of CECs onto NC-Jeffamine.

4.
Langmuir ; 32(10): 2283-90, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901110

RESUMO

Nanoflowers (NFs) are flowered-shaped particles with overall sizes or features in the nanoscale. Beyond their pleasing aesthetics, NFs have found a number of applications ranging from catalysis, to sensing, to drug delivery. Compared to inorganic based NFs, their organic and hybrid counterparts are relatively underdeveloped mostly because of the lack of a reliable and versatile method for their construction. We report here a method for constructing NFs from a wide variety of biologically relevant molecules (guests), ranging from small molecules, like doxorubicin, to biomacromolecules, like various proteins and plasmid DNA. The method relies on the encapsulation of the guests within a hierarchically structured particle made from supramolecular G-quadruplexes. The size and overall flexibility of the guests dictate the broad morphological features of the resulting NFs, specifically, small and rigid guests favor the formation of NFs with spiky petals, while large and/or flexible guests promote NFs with wide petals. The results from experiments using confocal fluorescence microscopy, and scanning electron microscopy provides the basis for the proposed mechanism for the NF formation.


Assuntos
Nanopartículas/química , Técnicas de Química Sintética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Dextranos/química , Doxorrubicina/química , Quadruplex G , Estrutura Molecular , Tamanho da Partícula , Plasmídeos , Poliestirenos/química , Porosidade , Temperatura , Xantenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...