Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 139(22): 3303-3313, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35313334

RESUMO

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) outcome has improved in the last decades, but leukemic relapses are still one of the main problems of this disease. Bone morphogenetic protein 4 (BMP4) was investigated as a new candidate biomarker with potential prognostic relevance, and its pathogenic role was assessed in the development of disease. A retrospective study was performed with 115 pediatric patients with BCP-ALL, and BMP4 expression was analyzed by quantitative reverse transcription polymerase chain reaction in leukemic blasts at the time of diagnosis. BMP4 mRNA expression levels in the third (upper) quartile were associated with a higher cumulative incidence of relapse as well as a worse 5-year event-free survival and central nervous system (CNS) involvement. Importantly, this association was also evident among children classified as having a nonhigh risk of relapse. A validation cohort of 236 patients with BCP-ALL supported these data. Furthermore, high BMP4 expression promoted engraftment and rapid disease progression in an NSG mouse xenograft model with CNS involvement. Pharmacological blockade of the canonical BMP signaling pathway significantly decreased CNS infiltration and consistently resulted in amelioration of clinical parameters, including neurological score. Mechanistically, BMP4 favored chemoresistance, enhanced adhesion and migration through brain vascular endothelial cells, and promoted a proinflammatory microenvironment and CNS angiogenesis. These data provide evidence that BMP4 expression levels in leukemic cells could be a useful biomarker to identify children with poor outcomes in the low-/intermediate-risk groups of BCP-ALL and that BMP4 could be a new therapeutic target to blockade leukemic CNS disease.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Proteína Morfogenética Óssea 4/genética , Criança , Células Endoteliais/metabolismo , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , Estudos Retrospectivos , Microambiente Tumoral
4.
Circulation ; 140(14): 1188-1204, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31567019

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS: We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS: We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and ß-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and ß-actin, and activation of glycogen synthase kinase-3ß (GSK3ß). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aß1 results in GSK3ß inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3ß inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3ß inhibition. CONCLUSIONS: Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aß1 in TMEM43 mutant mice or chemical GSK3ß inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.


Assuntos
Displasia Arritmogênica Ventricular Direita/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Disfunção Ventricular/patologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Ventrículos do Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Índice de Gravidade de Doença , Disfunção Ventricular/mortalidade
5.
Circ Res ; 125(2): 170-183, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31145021

RESUMO

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Assuntos
Miócitos Cardíacos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Disfunção Ventricular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Sístole , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Disfunção Ventricular/metabolismo
6.
J Am Coll Cardiol ; 71(6): 654-667, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29420962

RESUMO

BACKGROUND: In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. OBJECTIVES: The authors aimed to determine the role of the calcineurin splicing variant CnAß1 in the context of cardiac hypertrophy and its mechanism of action. METHODS: Transgenic mice overexpressing CnAß1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAß1 (CnAß1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. RESULTS: In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAß1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAß1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAß1. CnAß1Δi12 mice show increased cardiac hypertrophy and declined contractility. CONCLUSIONS: The metabolic reprogramming induced by CnAß1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Serina/metabolismo , Função Ventricular/efeitos dos fármacos , Animais , Calcineurina/farmacologia , Calcineurina/uso terapêutico , Cardiomegalia/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Função Ventricular/fisiologia
7.
Cell Chem Biol ; 23(11): 1372-1382, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27746127

RESUMO

Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aß variant CnAß1 in mouse ESCs (mESC). CnAß1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAß1 regulates the intracellular localization and activation of the mTORC2 complex. CnAß1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3ß/ß-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAß1 and its role in the differentiation of mESCs to the mesodermal lineage.


Assuntos
Calcineurina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Calcineurina/análise , Diferenciação Celular , Linhagem Celular , Complexo de Golgi/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Complexos Multiproteicos/análise , Transdução de Sinais , Serina-Treonina Quinases TOR/análise
8.
Cardiovasc Res ; 102(3): 396-406, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24667850

RESUMO

AIMS: Ventricular remodelling following myocardial infarction progressively leads to loss of contractile capacity and heart failure. Although calcineurin promotes maladaptive cardiac hypertrophy, we recently showed that the calcineurin splicing variant, CnAß1, has beneficial effects on the infarcted heart. However, whether this variant limits necrosis or improves remodelling is still unknown, precluding translation to the clinical arena. Here, we explored the effects and therapeutic potential of CnAß1 overexpression post-infarction. METHODS AND RESULTS: Double transgenic mice with inducible cardiomyocyte-specific overexpression of CnAß1 underwent left coronary artery ligation followed by reperfusion. Echocardiographic analysis showed depressed cardiac function in all infarcted mice 3 days post-infarction. Induction of CnAß1 overexpression 1 week after infarction improved function and reduced ventricular dilatation. CnAß1-overexpressing mice showed shorter, thicker scars, and reduced infarct expansion, accompanied by reduced myocardial remodelling. CnAß1 induced vascular endothelial growth factor (VEGF) expression in cardiomyocytes, which resulted in increased infarct vascularization. This paracrine angiogenic effect of CnAß1 was mediated by activation of the Akt/mammalian target of rapamycin pathway and VEGF. CONCLUSIONS: Our results indicate that CnAß1 exerts beneficial effects on the infarcted heart by promoting infarct vascularization and preventing infarct expansion. These findings emphasize the translational potential of CnAß1 for gene-based therapies.


Assuntos
Calcineurina/fisiologia , Terapia Genética , Infarto do Miocárdio/terapia , Remodelação Ventricular , Animais , Calcineurina/genética , Camundongos , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Splicing de RNA , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...