Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(4): e0076621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427513

RESUMO

Fungal pathogenicity toward insects has independently evolved several times, resulting in specialist and generalist pathogens, some of whom have maintained aspects of their previous lifestyles. Being able to grow as an endophyte (engaging in a mutualistic interaction with plants) or saprophyte (recycling nutrients back into the environment), the generalist (broad-host-range) fungus Beauveria bassiana does not need to rely on insect hosts to complete its life cycle. The diverse lifestyles of this fungus, saprophyte, pathogen, and symbiont, provide a unique system, with available genetic tools, to examine host-pathogen interactions, plant-fungus mutualistic relationships, and fungal development. This commentary highlights overlooked pathogenic and mutualistic aspects of B. bassiana that assist this fungus in shifting along the saprobe/parasite/mutualist continuum. Addressing these knowledge gaps and scrutinizing valuable players driving such a spectrum of ecological interactions will enrich our knowledge of fundamental environmental microbiology and help develop new approaches to pest control and sustainable farming.

2.
Front Physiol ; 12: 596571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746766

RESUMO

Social insects have evolved acute mechanisms for sensing and mitigating the spread of microbial pathogens within their communities that include complex behaviors such as grooming and sanitation. Chemical sensing involves detection and transport of olfactory and other chemicals that are mediated by at least two distinct classes of small molecular weight soluble proteins known as chemosensory- and odorant binding proteins (CSPs and OBPs, respectively) that exist as protein families in all insects. However, to date, a systematic examination of the expression of these genes involved in olfactory and other pathways to microbial infection has yet to be reported. The red imported fire ant, Solenopsis invicta, is one of the most successful invasive organisms on our planet. Here, we examined the temporal gene expression profiles of a suite of S. invicta CSPs (SiCSPs1-22) and OBPs (SiOBPs1-16) in response to infection by the broad host range fungal insect pathogen, Beauveria bassiana. Our data show that within 24 h post-infection, i.e., before the fungus has penetrated the host cuticle, the expression of SiCSPs and SiOBPs is altered (mainly increased compared to uninfected controls), followed by suppression of SiCSP and select SiOBP expression 48 h post-infection and mixed responses at 72 h post-infection. A smaller group of SiBOPs, however, appeared to respond to fungal infection, with expression of SiOBP15 consistently higher during fungal infection over the time course examined. These data indicate dynamic gene expression responses of CSPs and OBPs to fungal infection that provide clues to mechanisms that might mediate detection of microbial pathogens, triggering grooming, and nest sanitation.

3.
Front Physiol ; 11: 585883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192598

RESUMO

The red imported fire ant, Solenopsis invicta, is a eusocial invasive insect that has spread worldwide. Chemosensory proteins (CSPs) are ligand-binding proteins that participate in a diverse range of physiological processes that include olfaction and chemical transport. Here, we performed a systematic survey of the expression of the 21 gene S. invicta CSP family that includes at least two groups of apparent S. invicta-specific gene expansions. These data revealed caste, tissue, and developmental stage-specific differential expression of the SiCSPs. In general, moderate to high SiCSP expression was seen in worker antennae and abdomen tissues with lower expression in head/thorax regions. Male and female alates showed high antennal expression of fewer SiCSPs, with the female alate thorax showing comparatively high SiCSP expression. SiCSP expression was lower in male alates tissues compared to workers and female alates, albeit with some highly expressed SiCSPs. SiCSP expression was low during development including in eggs, larvae (early and late instars), and pupae. Global analyses revealed examples of conserved, divergent, and convergent SiCSP expression patterns linked to phylogenetic relationships. The developmental and caste-specific variation seen in SiCSP expression patterns suggests specific functional diversification of CSPs that may translate into differential chemical recognition and communication among individuals and/or reflect other cellular roles of CSPs. Our results support a model for CSPs acting as general ligand carriers involved in a wide range of physiological processes beyond olfaction. As compared to the expression patterns of the S. invicta odorant binding proteins (OBPs), an inverse correlation between SiOBP and SiCSP expression was seen, suggesting potential complementary and/or compensatory functions between these two classes of ligand carriers.

4.
Mol Phylogenet Evol ; 114: 199-211, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28645766

RESUMO

The study of biological diversification of oomycetes has been a difficult task for more than a century. Pioneer researchers used morphological characters to describe this heterogeneous group, and physiological and genetic tools expanded knowledge of these microorganisms. However, research on oomycete diversification is limited by conflicting phylogenies. Using whole genomic data from 17 oomycete taxa, we obtained a dataset of 277 core orthologous genes shared among these genomes. Analyses of this dataset resulted in highly congruent and strongly supported estimates of oomycete phylogeny when we used concatenated maximum likelihood and coalescent-based methods; the one important exception was the position of Albugo. Our results supported the position of Phytopythium vexans (formerly in Pythium clade K) as a sister clade to the Phytophthora-Hyaloperonospora clade. The remaining clades comprising Pythium sensu lato formed two monophyletic groups. One group was composed of three taxa that correspond to Pythium clades A, B and C, and the other group contained taxa representing clades F, G and I, in agreement with previous Pythium phylogenies. However, the group containing Pythium clades F, G and I was placed as sister to the Phytophthora-Hyaloperonospora-Phytopythium clade, thus confirming the lack of monophyly of Pythium sensu lato. Multispecies coalescent methods revealed that the white blister rust, Albugo laibachii, could not be placed with a high degree of confidence. Our analyses show that genomic data can resolve the oomycete phylogeny and provide a phylogenetic framework to study the evolution of oomycete lifestyles.


Assuntos
Oomicetos/classificação , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Oomicetos/genética , Filogenia , Pythium/classificação , Pythium/genética , Análise de Sequência de DNA
5.
Sci Rep ; 6: 35452, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27765943

RESUMO

Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Motivos de Aminoácidos , Animais , Formigas/genética , Comportamento Animal , Evolução Biológica , DNA Complementar/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto , Proteínas de Insetos/genética , Masculino , Filogenia , Receptores Odorantes/genética , Distribuição Tecidual
6.
Microbiology (Reading) ; 162(11): 1913-1921, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655425

RESUMO

The entomopathogenic fungus, Beauveria bassiana, is a microbial biological control agent capable of infecting a wide range of insect hosts. Conidia (spores) initiate infection via adhesion, growth and penetration of the insect cuticle, whose outmost layer is rich in lipids. Conidial virulence was investigated in B. bassiana WT and caleosin mutants (ΔBbcal1), the latter a protein involved in lipid storage and turnover. Topical insect bioassays revealed that conidia of the WT strain showed up to 40-fold differences in LD50 values depending upon the growth substrate. The most virulent conidia were harvested from potato dextrose agar containing oleic acid, and the least potent were those derived from Sabouraud dextrose/yeast extract agar (SDAY). However, with the exception of conidia derived from SDAY and Czapek Dox agar, in which values were reduced, mean lethal times to kill (LT50) were essentially unaffected. In topical bioassays, the ΔBbcal1 mutant displayed LD50 values 5-40-fold higher than the WT depending upon the growth substrate, with ΔBbcal1 conidia derived from SDAY unable to effectively penetrate the host cuticle. The ΔBbcal1 mutant also showed concomitant dramatic increases in LT50 values from a mean of ~4.5 for WT to >8.5 days for the mutant. In contrast, intrahaemocoel injection bioassays that bypass cuticle penetration events revealed only minor effects on virulence for either WT or ΔBbcal1 conidia. These data highlight the importance of caleosin-dependent lipid mobilization and/or signalling in cuticle penetration events but suggest their dispensability for immune evasion and within-host growth.


Assuntos
Beauveria/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/metabolismo , Meios de Cultura/metabolismo , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Proteínas de Plantas/metabolismo , Esporos Fúngicos/patogenicidade , Animais , Beauveria/genética , Beauveria/metabolismo , Beauveria/patogenicidade , Proteínas de Ligação ao Cálcio/genética , Meios de Cultura/química , Proteínas Fúngicas/genética , Proteínas de Plantas/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Virulência
7.
Genom Data ; 7: 60-1, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981361

RESUMO

Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads) and PacBio (10  Kb fragment library, 356,001 reads). The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000.

8.
PLoS One ; 10(10): e0140538, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26466369

RESUMO

TATA-binding protein (TBP) is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1) is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM) including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA). These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi.


Assuntos
Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/metabolismo , Animais , Beauveria/genética , Proteínas Fúngicas/genética , Expressão Gênica , Insetos/microbiologia , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteína de Ligação a TATA-Box/genética , Fatores de Transcrição/genética
9.
Environ Microbiol ; 17(11): 4600-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235819

RESUMO

Eukaryotic cells store lipids in membrane-encased droplets. The entomopathogenic fungus, Beauveria bassiana, initiates infection via attachment of its spores to the epicuticle or waxy layer of target insects, degrading and assimilating host surface hydrocarbons, carbohydrates and proteins. Caleosins are components of the proteinaceous coat of lipid droplets and a single B. bassiana caleosin homologue, Bbcal1, was identified and characterized. The BbCal1 sequence contained an EF-hand Ca(2+) binding domain and potential hydrophobic stretches similar to those found in plant caleosins, along with a proline knot motif defined by only two proline residues. Targeted gene inactivation of Bbcal1 did not appear to affect spore germination, growth on lipid substrates or stress response, but changes in lipid, vacuole and endoplasmic reticulum/multilamellar vesicle-like structures, and altered cellular lipid profiles were seen in conidia grown on a variety of substrates including potato dextrose agar, olive oil, glyceride trioleate, oleic acid and the alkane, C16 . The ΔBbcal1 mutant produced more compact assemblages of conidia, displayed a reduced and delayed spore dispersal phenotype, and showed decreased virulence in insect bioassays using the greater wax moth, Galleria mellonella. Our data indicate novel functions for caleosins in fungal virulence, spore development and the trafficking and/or turnover of lipid-related structures.


Assuntos
Beauveria/patogenicidade , Proteínas de Ligação ao Cálcio/metabolismo , Mariposas/microbiologia , Animais , Transporte Biológico/fisiologia , Retículo Endoplasmático/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Gotículas Lipídicas/fisiologia , Lipídeos/fisiologia , Esporos Fúngicos/patogenicidade , Virulência
10.
Proc Natl Acad Sci U S A ; 112(28): E3651-60, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26056261

RESUMO

Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.


Assuntos
Beauveria/enzimologia , Benzoquinonas/metabolismo , Interações Hospedeiro-Patógeno , Oxirredutases/metabolismo , Tribolium/metabolismo , Animais , Beauveria/patogenicidade , Mutação , Oxirredutases/genética , Tribolium/patogenicidade , Virulência
12.
Appl Microbiol Biotechnol ; 99(3): 1057-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25503318

RESUMO

The desire for decreased reliance on chemical pesticides continues to fuel interest in alternative means for pest control including the use of naturally occurring microbial insect pathogens. Insects, as vectors of disease causing agents or as agricultural pests, are responsible for millions of deaths and significant economic losses worldwide, placing stresses on productivity (GDP) and human health and welfare. In addition, alterations in climate change are likely to affect insect ranges, expanding their access to previously constrained geographic areas, a potentially worrisome outcome. Metarhizium anisopliae and Beauveria bassiana, two cosmopolitan fungal pathogens of insects found in almost all ecosystems, are the most commonly applied mycoinsecticides for a variety of insect control purposes. The availability of the complete genomes for both organisms coupled to robust technologies for their transformation has led to several advances in engineering these fungi for greater efficacy and/or utility in pest control applications. Here, we will provide an overview of the fungal-insect and fungal-plant interactions that occur and highlight recent advances in the genetic engineering of these fungi. The latter work has resulted in the development of strains displaying (1) increased resistance to abiotic stress, (2) increased cuticular targeting and degradation, (3) increased virulence via expression of insecticidal protein/peptide toxins, (4) the ability to block transmission of disease causing agents, and (5) the ability to target specific insect hosts, decrease host fecundity, and/or alter insect behaviors.


Assuntos
Beauveria/crescimento & desenvolvimento , Beauveria/metabolismo , Insetos/microbiologia , Inseticidas/metabolismo , Metarhizium/crescimento & desenvolvimento , Metarhizium/metabolismo , Controle Biológico de Vetores/métodos , Animais , Beauveria/genética , Biotecnologia/métodos , Engenharia Genética , Insetos/fisiologia , Metarhizium/genética
13.
Curr Genet ; 61(3): 239-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25113413

RESUMO

The Ascomycete fungal insect pathogens, Beauveria and Metarhizium spp. have emerged as model systems with which to probe diverse aspects of fungal growth, stress response, and pathogenesis. Due to the availability of genomic resources and the development of robust methods for genetic manipulation, the last 5 years have witnessed a rapid increase in the molecular characterization of genes and their pathways involved in stress response and signal transduction in these fungi. These studies have been performed mainly via characterization of gene deletion/knockout mutants and have included the targeting of general proteins involved in stress response and/or virulence, e.g. catalases, superoxide dismutases, and osmolyte balance maintenance enzymes, membrane proteins and signaling pathways including GPI anchored proteins and G-protein coupled membrane receptors, MAPK pathways, e.g. (i) the pheromone/nutrient sensing, Fus3/Kss1, (ii) the cell wall integrity, Mpk1, and (iii) the high osmolarity, Hog1, the PKA/adenyl cyclase pathway, and various downstream transcription factors, e.g. Msn2, CreA and Pac1. Here, we will discuss current research that strongly suggests extensive underlying contributions of these biochemical and signaling pathways to both abiotic stress response and virulence.


Assuntos
Fungos/fisiologia , Fungos/patogenicidade , Transdução de Sinais , Estresse Fisiológico , Animais , Interações Hospedeiro-Patógeno , Insetos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Micoses/microbiologia , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Virulência
14.
Microbiology (Reading) ; 160(Pt 11): 2526-2537, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25194143

RESUMO

The filamentous fungus, Beauveria bassiana, is a ubiquitously distributed insect pathogen, currently used as an alternative to chemical pesticides for pest control. Conidiospores are the means by which the fungus disseminates in the environment, and these cells also represent the infectious agent most commonly used in field applications. Little, however, is known concerning the molecular basis for maintenance of spore viability, a critical feature for survival and persistence. Here, we report on the role of a putative methyltransferase, BbmtrA, in conidial viability, normal fungal growth and development, and virulence, via characterization of a targeted gene knockout strain. Loss of BbmtrA resulted in pleiotropic effects including reduced germination, growth and conidiation, with growing mycelia displaying greater branching than the WT parent. Conidial viability dramatically decreased over time, with <5 % of the cells remaining viable after 30 days as compared with >80 % of the WT. Reduced production of extracellular proteins was also observed for the ΔBbmtrA mutant, including protease/peptidases, glycoside hydrolases and the hyd1 hydrophobin. The latter was further confirmed by hyd1 gene expression analysis. Insect bioassays using the greater wax moth, Galleria mellonella, further revealed that the ΔBbmtrA strain was attenuated in virulence and failed to sporulate on host cadavers. These data support a global role for mtrA in fungal physiological processes.


Assuntos
Beauveria/enzimologia , Proteínas Fúngicas/metabolismo , Metiltransferases/metabolismo , Mariposas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Beauveria/genética , Beauveria/crescimento & desenvolvimento , Beauveria/patogenicidade , Proteínas Fúngicas/genética , Metiltransferases/genética , Dados de Sequência Molecular , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência
15.
Front Microbiol ; 4: 24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23422735

RESUMO

Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter ß-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP), a subset of which are involved in hydrocarbon oxidation, and several of which represent new CYP subfamilies/families. Expression data indicated differential induction by alkanes and insect lipids and four CYP proteins have been partially characterized after heterologous expression in yeast. Gene knockouts revealed a phenotype for only one (cyp52X1) out of six genes examined to date. CYP52X1 oxidizes long chain fatty acids and participates in the degradation of specific epicuticular lipid components needed for breaching the insect waxy layer. Examining the hydrocarbon oxidizing CYP repertoire of pathogens involved in insect epicuticle degradation can lead to the characterization of enzymes with novel substrate specificities. Pathogen targeting may also represent an important co-evolutionary process regarding insect cuticular hydrocarbon synthesis.

16.
Insects ; 4(3): 357-74, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26462424

RESUMO

Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms underlying this interaction can shed light on the ecology and evolution of virulence and can be used for rational design strategies at increasing the effectiveness of entomopathogenic fungi for pest control in field applications.

17.
Microbiology (Reading) ; 158(Pt 7): 1843-1851, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22504440

RESUMO

Neuronal calcium sensor proteins and their homologues participate in transducing extracellular signals that affect intracellular Ca(2+) levels, which in turn regulate enzyme activities, secretion, gene expression and other biological processes. The filamentous fungus Beauveria bassiana is a broad-host-range pathogen of insects that acidifies the extracellular milieu during growth and pathogenesis towards target hosts. A collection of B. bassiana random insertion mutants were screened on pH indicator plates and one mutant was isolated that displayed reduced acidification. The random insertion site was mapped to a gene that displayed homology to the neuronal calcium sensor/frequenin protein family and was designated Bbcsa1. To validate the role of Bbcsa1 in B. bassiana, a targeted gene-knockout was constructed. Data confirmed that Bbcsa1 was not an essential gene and the ΔBbcsa1 strain displayed delayed acidification of the medium when grown in Czapek-Dox medium, as compared with the wild-type parent. HPLC profiling of secreted metabolites did not detect any major changes in the production of organic acids, although downregulation of the membrane H(+) pump/ATPase was noted in the mutant. A slight growth-deficient phenotype was observed for the ΔBbcsa1 strain on Czapek-Dox and potato dextrose media, which was accentuated at high calcium concentrations (500 mM) and 1.5 M sorbitol, but was unaffected by EDTA or SDS. Perturbations in vacuole morphology were also noted for the mutant. Insect bioassays using Galleria mellonella as the target host revealed decreased virulence in the ΔBbcsa1 mutant when applied topically, representing the natural route of infection, but no significant effect was observed when fungal cells were directly injected into target hosts. These results suggest that Bbcsa1 participates in pre-penetration or early penetration events, but is dispensable once the insect cuticle has been breached.


Assuntos
Beauveria/genética , Beauveria/patogenicidade , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Animais , Ácidos Carboxílicos/metabolismo , Meios de Cultura/química , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Lepidópteros/microbiologia , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Análise de Sobrevida , Virulência , Fatores de Virulência/biossíntese
19.
Fungal Genet Biol ; 48(12): 1124-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21907298

RESUMO

Fusarium oxysporum, the causal agent of vascular wilt disease, affects a wide range of plant species and can produce disseminated infections in humans. F. oxysporum f. sp. lycopersici isolate FGSC 9935 causes disease both on tomato plants and immunodepressed mice, making it an ideal model for the comparative analysis of fungal virulence on plant and animal hosts. Here we tested the ability of FGSC 9935 to cause disease in the greater wax moth Galleria mellonella, an invertebrate model host that is widely used for the study of microbial human pathogens. Injection of living but not of heat-killed microconidia into the hemocoel of G. mellonella larvae resulted in dose-dependent killing both at 30°C and at 37°C. Fluorescence microscopy of larvae inoculated with a F. oxysporum transformant expressing GFP revealed hyphal proliferation within the hemocoel, interaction with G. mellonella hemocytes, and colonization of the killed insects by the fungus. Fungal gene knockout mutants previously tested in the tomato and immunodepressed mouse systems displayed a good correlation in virulence between the Galleria and the mouse model. Thus, Galleria represents a useful non-vertebrate infection model for studying virulence mechanisms of F. oxysporum on animal hosts.


Assuntos
Modelos Animais de Doenças , Fusariose/microbiologia , Fusarium/patogenicidade , Mariposas/microbiologia , Animais , Fusariose/mortalidade , Fusarium/genética , Técnicas de Inativação de Genes , Genes Fúngicos , Proteínas de Fluorescência Verde , Hemócitos/metabolismo , Estimativa de Kaplan-Meier , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mutação , Fatores de Transcrição/genética , Virulência/genética
20.
BMC Microbiol ; 11: 84, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521527

RESUMO

BACKGROUND: The entomopathogenic anamorphic fungus Beauveria bassiana is currently used as a biocontrol agent (BCA) of insects. Fifty-seven Beauveria bassiana isolates -53 from Spain- were characterized, integrating group I intron insertion patterns at the 3'-end of the nuclear large subunit ribosomal gene (LSU rDNA) and elongation factor 1-alpha (EF1-α) phylogenetic information, in order to assess the genetic structure and diversity of this Spanish collection of B. bassiana. RESULTS: Group I intron genotype analysis was based on the four highly conserved insertion sites of the LSU (Ec2653, Ec2449, Ec2066, Ec1921). Of the 16 possible combinations/genotypes, only four were detected, two of which were predominant, containing 44 and 9 members out of 57 isolates, respectively. Interestingly, the members of the latter two genotypes showed unique differences in their growth temperatures. In follow, EF1-α phylogeny served to classify most of the strains in the B. bassiana s.s. (sensu stricto) group and separate them into 5 molecular subgroups, all of which contained a group I intron belonging to the IC1 subtype at the Ec1921 position. A number of parameters such as thermal growth or origin (host, geographic location and climatic conditions) were also examined but in general no association could be found. CONCLUSION: Most Spanish B. bassiana isolates (77.2%) are grouped into a major phylogenetic subgroup with word-wide distribution. However, high phylogenetic diversity was also detected among Spanish isolates from close geographic zones with low climatic variation. In general, no correlation was observed between the molecular distribution and geographic origin or climatic characteristics where the Spanish B. bassiana isolates were sampled.


Assuntos
Beauveria/classificação , Beauveria/genética , Genes de RNAr , Insetos/microbiologia , Fator 1 de Elongação de Peptídeos/genética , Polimorfismo Genético , Animais , Beauveria/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Íntrons , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...