Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Plast ; 2016: 1752176, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26843989

RESUMO

An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Genes RAG-1 , Proteínas de Homeodomínio/genética , Memória de Longo Prazo/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Eletrochoque , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
2.
Int J Environ Res Public Health ; 13(1): ijerph13010018, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26703677

RESUMO

PURPOSE: This paper describes SalHUD, a prototype web-based application for visualizing health data from Puerto Rico. Our initial focus was to provide interactive maps displaying years of potential life lost (YPLL). METHODS: The public-use mortality file for year 2008 was downloaded from the Puerto Rico Institute of Statistics website. Data was processed with R, Python and EpiInfo to calculate years of potential life lost for the leading causes of death on each of the 78 municipalities in the island. Death records were classified according to ICD-10 codes. YPLL for each municipality was integrated into AtlasPR, a D3 Javascript map library. Additional Javascript, HTML and CSS programing was required to display maps as a web-based interface. RESULTS: YPLL for all municipalities are displayed on a map of Puerto Rico for each of the ten leading causes of death and for all causes combined, so users may dynamically explore the impact of premature mortality. DISCUSSION: This work is the first step in providing the general public in Puerto Rico with user-friendly, interactive, visual access to public health data that is usually published in numerical, text-based media.


Assuntos
Causas de Morte , Internet , Mortalidade , Saúde Pública/estatística & dados numéricos , Humanos , Porto Rico , Software
3.
J Neurosci ; 29(18): 5726-37, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420241

RESUMO

We previously proposed that DNA recombination/repair processes play a role in memory formation. Here, we examined the possible role of the fen-1 gene, encoding a flap structure-specific endonuclease, in memory consolidation of conditioned taste aversion (CTA). Quantitative real-time PCR showed that amygdalar fen-1 mRNA induction was associated to the central processing of the illness experience related to CTA and to CTA itself, but not to the central processing resulting from the presentation of a novel flavor. CTA also increased expression of the Fen-1 protein in the amygdala, but not the insular cortex. In addition, double immunofluorescence analyses showed that amygdalar Fen-1 expression is mostly localized within neurons. Importantly, functional studies demonstrated that amygdalar antisense knockdown of fen-1 expression impaired consolidation, but not short-term memory, of CTA. Overall, these studies define the fen-1 endonuclease as a new DNA recombination/repair factor involved in the formation of long-term memories.


Assuntos
Aprendizagem da Esquiva/fisiologia , Endonucleases Flap/metabolismo , Memória/fisiologia , Paladar , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Análise de Variância , Animais , Astrócitos/metabolismo , Comportamento Animal , Linhagem Celular Transformada , Endonucleases Flap/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Memória/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans
4.
Yeast ; 26(2): 111-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19235772

RESUMO

The euryhaline marine yeast Debaromyces hansenii is a model system for the study of processes related to osmoadaptation. In this study, microarray-based gene expression analyses of the entire genome of D. hansenii was used to study its response to osmotic stress. Differential gene expression, compared to control, was examined at three time points (0.5, 3 and 6 h) after exposure of D. hansenii cultures to high salt concentration. Among the 1.72% of genes showing statistically significant differences in expression, only 65 genes displayed at least three-fold increases in mRNA levels after treatment with 2 M NaCl. On the other hand, 44 genes showed three-fold repression. Upregulated as well as the downregulated genes were grouped into functional categories to identify biochemical processes possibly affected by osmotic stress and involved in osmoadaptation. The observation that only a limited number of genes are upregulated in D. hansenii in response to osmotic stress supports the notion that D. hansenii is pre-adapted to survive in extreme saline environments. In addition, since more than one-half of the upregulated genes encode for ribosomal proteins, it is possible that a translational gene regulatory mechanism plays a key role in D. hansenii's osmoregulatory response. Validation studies for ENA1 and for hyphal wall/cell elongation protein genes, using real-time PCR, confirmed patterns of gene expression observed in our microarray experiments. To our knowledge, this study is the first of its kind in this organism and provides the foundation for future molecular studies assessing the significance of the genes identified here in D. hansenii's osmoadaptation.


Assuntos
Debaryomyces/fisiologia , Perfilação da Expressão Gênica , Genoma Fúngico , Resposta ao Choque Térmico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pressão Osmótica , Adaptação Fisiológica , Debaryomyces/efeitos dos fármacos , Debaryomyces/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Cloreto de Sódio/farmacologia
5.
Neurobiol Learn Mem ; 80(1): 80-95, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12737936

RESUMO

Learning and long-term memory are thought to involve temporally defined changes in gene expression that lead to the strengthening of synaptic connections in selected brain regions. We used cDNA microarrays to study hippocampal gene expression in animals trained in a spatial discrimination-learning paradigm. Our analysis identified 19 genes that showed statistically significant changes in expression when comparing Nai;ve versus Trained animals. We confirmed the changes in expression for the genes encoding the nuclear protein prothymosin(alpha) and the delta-1 opioid receptor (DOR1) by Northern blotting or in situ hybridization. In additional studies, laser-capture microdissection (LCM) allowed us to obtain enriched neuronal populations from the dentate gyrus, CA1, and CA3 subregions of the hippocampus from Nai;ve, Pseudotrained, and spatially Trained animals. Real-time PCR examined the spatial learning specificity of hippocampal modulation of the genes encoding protein kinase B (PKB, also known as Akt), protein kinase C(delta) (PKC(delta)), cell adhesion kinase(beta) (CAK(beta), also known as Pyk2), and receptor protein tyrosine phosphatase(zeta/beta) (RPTP(zeta/beta)). These studies showed subregion specificity of spatial learning-induced changes in gene expression within the hippocampus, a feature that was particular to each gene studied. We suggest that statistically valid gene expression profiles generated with cDNA microarrays may provide important insights as to the cellular and molecular events subserving learning and memory processes in the brain.


Assuntos
Aprendizagem por Discriminação/fisiologia , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Animais , Northern Blotting , Hibridização In Situ , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Ratos Long-Evans , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Receptores Opioides delta/metabolismo , Percepção Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...