Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(38): 22542-22555, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35514582

RESUMO

A new fluorinated chalcone (E)-3-(2,6-difluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one was synthesized in 90% yield and crystallized by a slow evaporation technique. Its full structural characterization and purity were determined by scanning electron microscopy, infrared spectroscopy, gas chromatography-mass spectrometry, 1H, 13C and 19F nuclear magnetic resonance, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman microspectroscopy, UV-Vis absorption spectroscopy, single crystal X-ray diffraction (XRD) and Hirshfeld surface (HS) analysis. The fluorinated chalcone crystallized in centrosymmetric space group P21/c stabilized by the C-H⋯O and C-H⋯F interactions and the π⋯π contact. The crystalline environment was simulated through the supermolecule approach where a bulk with 378 000 atoms was built. The electric parameters were calculated at the DFT/CAM-B3LYP/6-311++G(d,p) level as function of the electric field frequency. The macroscopic parameters such as linear refractive index and third-order nonlinear susceptibility (χ (3)) were calculated, and the results were compared with experimental data obtained from the literature. The χ (3)-value for the chalcone crystal is 369.294 × 10-22 m2 V-2, higher than those obtained from a few similar types of molecule, showing that the chalcone crystal can be considered as a nonlinear optical material. Also, molecular theoretical calculations such as infrared spectrum assignments, frontier molecular orbital analysis and MEP were implemented, revealing that the most positive region is around the hydrogen atoms of the aromatic rings, and electrophilic attack occurs on the carbonyl group.

2.
J Mol Model ; 23(11): 315, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044437

RESUMO

Coumarins are natural and synthetic active ingredients widely applied in diverse types of medicinal treatments, such as cancer, inflammation, infection, and enzyme inhibition (monoamine oxidase B). Dihydrocoumarin compounds are of great interest in organic chemistry due to their structural versatilities and, as part of our investigations concerning the structural characterization of small molecules, this work focuses on crystal structure and spectroscopic characterization of the synthesized and crystallized compound 4-(4-methoxyphenyl)-3,4-dihydro-chromen-2-one (C16H14O3). Additionally, a theoretical calculation was performed using density functional theory to analyze the sites where nucleophilic or electrophilic attack took place and to examine the molecular electrostatic potential surface. Throughout all of these calculations, both density functional theory and Car-Parrinello molecular dynamics were performed by fully optimized geometry. The spectroscopic analysis indicated the presence of aromatic carbons and hydrogen atoms, and also the carbonyl and methoxy groups that were confirmed by the crystallographic structure. The C16H14O3 compound has a non-classical intermolecular interaction of type C-H⋅⋅⋅O that drives the molecular arrangement and the crystal packing. Moreover, the main absorbent groups were characterized throughout calculated harmonic vibrational frequencies. Also, natural bond orbital analysis successfully locates the molecular orbital with π-bonding symmetry and the molecular orbital with π* antibonding symmetry. Finally, the gap between highest occupied and lowest unoccupied molecular orbitals implies in a high kinetic stability and low chemical reactivity of title molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA