Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Endocrinol Metab ; 109(5): 1334-1340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37975816

RESUMO

CONTEXT: Fibrous dysplasia (FD) results in fractures, pain, and deformities. Abnormal osteoprogenitor cells overproduce FGF23, leading to hyperphosphaturia in most patients and frank hypophosphatemia in a subset. Studies suggest hypophosphatemia is associated with increased FD-related morbidity. However, the relationship between phosphorus and skeletal complications has not been investigated, and the optimal therapeutic target has not been determined. OBJECTIVE: Characterize the impact of serum phosphorus on FD-related morbidity and identify levels associated with increased skeletal complications. METHODS: Natural history study with 240 subjects at a clinical research center who had ≥1 fasting phosphorus level, determined as age- and sex-adjusted Z-scores. Subjects were categorized based on frank hypophosphatemia (Z-score ≤ -2; n = 48); low-normophosphatemia (> -2 to ≤ -1; n = 66); and high-normophosphatemia (> -1 to ≤ 2; n = 125). Main outcomes were fractures, orthopedic surgeries, and scoliosis. RESULTS: Subjects with frank and low-normophosphatemia had increased fracture and surgery rates vs high-normophosphatemia. The prevalence of moderate to severe scoliosis was similarly higher in the frank and low-normophosphatemia groups. In a subanalysis of patients matched for Skeletal Burden Score ≥35, fracture and surgery rates remained higher in the frank hypophosphatemia group, suggesting association between phosphorus and skeletal complications is not explained by differences in FD burden alone. CONCLUSION: Both frank hypophosphatemia and low-normophosphatemia are associated with increased FD-related complications. This supports FGF23-mediated hypophosphatemia as a driver of skeletal morbidity, which may impact a larger proportion of the FD/McCune-Albright syndrome population than previously recognized. These findings enable clinicians to identify at-risk patients and will inform development of prospective studies to determine optimal therapeutic targets.

3.
PET Clin ; 18(1): 1-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442958

RESUMO

Osteoporosis is a metabolic bone disorder that leads to a decline in bone microarchitecture, predisposing individuals to catastrophic fractures. The current standard of care relies on detecting bone structural change; however, these methods largely miss the complex biologic forces that drive these structural changes and response to treatment. This review introduces sodium fluoride (18F-NaF) positron emission tomography/computed tomography (PET/CT) as a powerful tool to quantify bone metabolism. Here, we discuss the methods of 18F-NaF PET/CT, with a special focus on dynamic scans to quantify parameters relevant to bone health, and how these markers are relevant to osteoporosis.


Assuntos
Fraturas Ósseas , Osteoporose , Humanos , Fluoreto de Sódio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Osteoporose/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...