Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(3): 103145, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909360

RESUMO

Tissue-resident macrophages (TRMs) constitute the first line of defense against infection in all organs and perform organ-specific functions during tissue homeostasis. Here, we present a protocol for long-term monocultures of murine macrophages from different adult organs, including the brain, liver, peritoneal cavity, and lung. We describe steps for tissue preparation and the use of a combination of organotypic conditions to maintain a TRM-like identity in vitro, resulting in an ideal screening platform for a wide range of assays and readouts. For complete details on the use and execution of this protocol, please refer to Aktories et al.1.

2.
Eur J Immunol ; 53(7): e2250232, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042800

RESUMO

Immunosurveillance by microglia is a dynamic process in the central nervous system (CNS) with versatile functions to maintain tissue homeostasis and provide immune defense. A tightly controlled microglia network throughout the CNS parenchyma facilitates efficient immunosurveillance, where each cell guards a certain tissue territory. Each cell is constantly surveilling its environment and the surrounding cells, screening for pathogens but also removing cell debris and metabolites, grooming neighboring cells and facilitating cellular crosstalk. In the absence of inflammation, this "tissue surveillance" by microglia presents an essential process for CNS homeostasis and development. In this review, we provide a summary on different tissue surveillance functions mediated by microglia, the underlying molecular machineries, and how defects, such as genetic mutations, can alter these surveillance mechanisms and cause disease onset.


Assuntos
Sistema Nervoso Central , Microglia , Animais , Adulto , Humanos , Homeostase/fisiologia , Inflamação/metabolismo
3.
Cell Rep Methods ; 2(8): 100260, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046625

RESUMO

Tissue-resident macrophages (TRMs) perform organ-specific functions that are dependent on factors such as hematopoietic origin, local environment, and biological influences. A diverse range of in vitro culture systems have been developed to decipher TRM functions, including bone marrow-derived macrophages (BMDMs), induced pluripotent stem cell (iPSC)-derived TRMs, or immortalized cell lines. However, despite the usefulness of such systems, there are notable limitations. Attempts to culture primary macrophages often require purification of cells and lack a high cell yield and consistent phenotype. Here, we aimed to address these limitations by establishing an organotypic primary cell culture protocol. We obtained long-term monocultures of macrophages derived from distinct organs without prior purification using specific growth factors and tissue normoxic conditions that largely conserved a TRM-like identity in vitro. Thus, this organotypic system offers an ideal screening platform for primary macrophages from different organs that can be used for a wide range of assays and readouts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas Microfisiológicos , Diferenciação Celular/genética , Macrófagos , Histiócitos
4.
PLoS Pathog ; 16(11): e1009038, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33196685

RESUMO

Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected.


Assuntos
Proteínas de Resistência a Myxovirus/metabolismo , Infecções por Orthomyxoviridae/virologia , Thogotovirus/genética , Carrapatos/virologia , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteínas de Resistência a Myxovirus/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/transmissão , Thogotovirus/patogenicidade , Thogotovirus/fisiologia , Células Vero , Proteínas Virais/metabolismo , Virulência
5.
Front Immunol ; 11: 2123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072074

RESUMO

The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.


Assuntos
Sistema Nervoso Central/imunologia , Encefalomielite/imunologia , Macrófagos/imunologia , Animais , Candidíase/embriologia , Candidíase/imunologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/crescimento & desenvolvimento , Citocinas/imunologia , Feminino , Doenças Fetais/imunologia , Feto/imunologia , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Troca Materno-Fetal , Placenta/fisiologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal , Ratos , Receptores de Reconhecimento de Padrão/imunologia , Infecções Estreptocócicas/embriologia , Infecções Estreptocócicas/imunologia , Toxoplasmose Congênita/imunologia , Viroses/embriologia , Viroses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...