Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 9(65): 37778-37787, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541818

RESUMO

Hydration history was found to control the inclusion capacity of α-cyclodextrin (aCD) for volatile organic guests, so that its level may be switched from zero to the stoichiometric value and back by the variation of aCD hydration/dehydration order and direction. Such variation of the inclusion capacity is caused by the balance of two water roles: the activation of guest inclusion and guest/water competition. These observed concurrent roles and the cooperativity of guest inclusion and hydration make possible the smart tuning of the guest inclusion by the subtle change of preparation procedure. Depending on the hydration history, aCD was shown to form hydrates with the same water contents but different packing types and different kinetics of dehydration, which correlates with their different inclusion capacities for organic guests. This correlation reveals how the "high-energy" and "low-energy" water works in the guest inclusion by aCD, which may be relevant for other cyclodextrins and hydrophilic receptors of biomimetic and biological natures. The results can help to rationalize the technologies of producing various inclusion compounds of cyclodextrins.

2.
Phys Chem Chem Phys ; 20(41): 26105-26116, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30303209

RESUMO

The size exclusion of guests by α-cyclodextrin (aCD) in binary host-guest systems was observed to be a key structure-property relationship for the choice of this host as a receptor. For this, vapor sorption isotherms of water and volatile organic compounds were determined using dry aCD, which show an inclusion threshold by sorbate activity corresponding to a phase transition of guest (or water) inclusion. These phase transitions were also characterized using X-ray powder diffractograms. The analysis of these data shows that interaction of aCD with water does not differ much from that with organic compounds that can be included by aCD without water and therefore are water-mimicking as such. The inclusion and hydration Gibbs energies and composition of the saturated host-guest clathrates were determined from sorption isotherms. The Gibbs energies of guest inclusion by solid aCD and its hydration characterize the guest-host and water-host affinity in the solid state. The correlation of the obtained inclusion parameters with that of guest size indicate the ban on the inclusion of volatile hydrophilic organic compounds with more than three carbon atoms and smaller molecules without hydrophilic groups. These data may be used for estimation of the relative ability of more hydrophobic guests to replace water and organic solvents in solid aCD. The observed inclusion of water and small hydrophilic molecules by solid aCD with phase transition gives an alternative insight into the role of water in activating the inclusion of more hydrophobic guests. Furthermore, the results show the extent to which aCD may be preferable in applications using water or other solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...