Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(6): 1467-1480, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38757809

RESUMO

Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells. In a series of xenografts, we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore, gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas, and possibly human angiosarcomas, maintain molecular properties that provide hematopoietic support and facilitate stromal reactions, suggesting their potential involvement in promoting the growth of hematopoietic tumors. SIGNIFICANCE: We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation, providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.


Assuntos
Hemangiossarcoma , Hemangiossarcoma/patologia , Hemangiossarcoma/veterinária , Hemangiossarcoma/genética , Cães , Animais , Humanos , Camundongos , Microambiente Tumoral , Células-Tronco Hematopoéticas/patologia , Hematopoese , Diferenciação Celular
2.
NAR Cancer ; 5(3): zcad045, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37636316

RESUMO

Androgen receptor (AR) inhibition is standard of care for advanced prostate cancer (PC). However, efficacy is limited by progression to castration-resistant PC (CRPC), usually due to AR re-activation via mechanisms that include AR amplification and structural rearrangement. These two classes of AR alterations often co-occur in CRPC tumors, but it is unclear whether this reflects intercellular or intracellular heterogeneity of AR. Resolving this is important for developing new therapies and predictive biomarkers. Here, we analyzed 41 CRPC tumors and 6 patient-derived xenografts (PDXs) using linked-read DNA-sequencing, and identified 7 tumors that developed complex, multiply-rearranged AR gene structures in conjunction with very high AR copy number. Analysis of PDX models by optical genome mapping and fluorescence in situ hybridization showed that AR residing on extrachromosomal DNA (ecDNA) was an underlying mechanism, and was associated with elevated levels and diversity of AR expression. This study identifies co-evolution of AR gene copy number and structural complexity via ecDNA as a mechanism associated with endocrine therapy resistance.

4.
Mol Cancer Res ; 19(5): 847-861, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33649193

RESUMO

Sporadic angiosarcomas are aggressive vascular sarcomas whose rarity and genomic complexity present significant obstacles in deciphering the pathogenic significance of individual genetic alterations. Numerous fusion genes have been identified across multiple types of cancers, but their existence and significance remain unclear in sporadic angiosarcomas. In this study, we leveraged RNA-sequencing data from 13 human angiosarcomas and 76 spontaneous canine hemangiosarcomas to identify fusion genes associated with spontaneous vascular malignancies. Ten novel protein-coding fusion genes, including TEX2-PECAM1 and ATP8A2-FLT1, were identified in seven of the 13 human tumors, with two tumors showing mutations of TP53. HRAS and NRAS mutations were found in angiosarcomas without fusions or TP53 mutations. We found 15 novel protein-coding fusion genes including MYO16-PTK2, GABRA3-FLT1, and AKT3-XPNPEP1 in 11 of the 76 canine hemangiosarcomas; these fusion genes were seen exclusively in tumors of the angiogenic molecular subtype that contained recurrent mutations in TP53, PIK3CA, PIK3R1, and NRAS. In particular, fusion genes and mutations of TP53 cooccurred in tumors with higher frequency than expected by random chance, and they enriched gene signatures predicting activation of angiogenic pathways. Comparative transcriptomic analysis of human angiosarcomas and canine hemangiosarcomas identified shared molecular signatures associated with activation of PI3K/AKT/mTOR pathways. Our data suggest that genome instability induced by TP53 mutations might create a predisposition for fusion events that may contribute to tumor progression by promoting selection and/or enhancing fitness through activation of convergent angiogenic pathways in this vascular malignancy. IMPLICATIONS: This study shows that, while drive events of malignant vasoformative tumors of humans and dogs include diverse mutations and stochastic rearrangements that create novel fusion genes, convergent transcriptional programs govern the highly conserved morphologic organization and biological behavior of these tumors in both species.


Assuntos
Doenças do Cão/genética , Perfilação da Expressão Gênica/métodos , Hemangiossarcoma/genética , Neoplasias Vasculares/genética , Animais , Cães , Fusão Gênica , Genômica/métodos , Humanos , Transcrição Gênica
5.
Blood ; 118(9): 2602-8, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21719598

RESUMO

As peripheral blood has surpassed bone marrow as a predominant source of stem cells for transplantation, use of the cytokine granulocyte colony-stimulating factor (G-CSF) to mobilize peripheral blood stem cells (PBSCs) is increasing. Issues regarding potential genotoxic effects of even short-term, low-dose G-CSF treatment for the healthy donors have been raised. To address the question of chromosomal instability, we used FISH to evaluate the peripheral blood lymphocytes of 22 PBSC donors and 22 matched controls at 5 time points over a 12-month period. The specimens obtained were a pre-G-CSF, followed by collections at the time of PBSC harvest (days 5-7) and at 2, 6, and 12 months after donation. Eight additional PBSC donors provided a single sample at 12 months. Nine loci (mapped to chromosomes 7, 8, 9, 17, 21, and 22) were evaluated for aneuploidy, including 3 mapped to chromosome 7 because of the specific relevance of monosomy 7. Replication timing was evaluated for chromosome 15 and 17 loci. No evidence was found of G-CSF-induced chromosomal instability. This work supports the epidemiologic data that have demonstrated no increased risk for hematologic malignancies in G-CSF-primed PBSC donors.


Assuntos
Aneuploidia , Cromossomos Humanos/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/toxicidade , Mobilização de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco de Sangue Periférico , Doadores de Tecidos , Células Cultivadas , Deleção Cromossômica , Cromossomos Humanos/ultraestrutura , Cromossomos Humanos Par 7 , Seguimentos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Hibridização in Situ Fluorescente , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Estudos Prospectivos , Projetos de Pesquisa , Transplante Homólogo
6.
Cloning Stem Cells ; 10(2): 231-48, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18338954

RESUMO

Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.


Assuntos
Fusão Celular , Quimera , Células-Tronco Embrionárias/fisiologia , Animais , Blastocisto/fisiologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/citologia , Células Neuroepiteliais/citologia , Ploidias , Recombinases/metabolismo , Recombinação Genética , Transfecção , Transgenes , Cromossomo X , Cromossomo Y
7.
Am J Hum Genet ; 80(5): 938-47, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17436248

RESUMO

Low-copy repeats (LCRs) are genomic features that affect chromosome stability and can produce disease-associated rearrangements. We describe members of three families with deletions in 10q22.3-q23.31, a region harboring a complex set of LCRs, and demonstrate that rearrangements in this region are associated with behavioral and neurodevelopmental abnormalities, including cognitive impairment, autism, hyperactivity, and possibly psychiatric disease. Fine mapping of the deletions in members of all three families by use of a custom 10q oligonucleotide array-based comparative genomic hybridization (NimbleGen) and polymerase chain reaction-based methods demonstrated a different deletion in each family. In one proband, the deletion breakpoints are associated with DNA fragments containing noncontiguous sequences of chromosome 10, whereas, in the other two families, the breakpoints are within paralogous LCRs, removing approximately 7.2 Mb and 32 genes. Our data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.


Assuntos
Transtornos do Comportamento Infantil/genética , Deleção Cromossômica , Cromossomos Humanos Par 10/genética , Transtornos Cognitivos/genética , Transtorno Autístico/genética , Criança , Pré-Escolar , Bandeamento Cromossômico , Quebra Cromossômica , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Feminino , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Sequências Repetitivas de Ácido Nucleico
8.
Stem Cells ; 25(2): 371-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17038675

RESUMO

To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole-body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain-specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon-related genetic abnormality, and p53 was not overexpressed. Infusion of MSC-derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/patologia , Sarcoma/patologia , Animais , Diferenciação Celular , Transformação Celular Neoplásica , Células Cultivadas , Células Clonais , Extremidades/patologia , Cariotipagem , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Pulmão/fisiopatologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Sarcoma/genética , Imagem Corporal Total
9.
PLoS Genet ; 2(9): e156, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17009875

RESUMO

Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Mutagênese Insercional , Mutação , Animais , Animais Recém-Nascidos , Aberrações Cromossômicas , Cromossomos , Cromossomos de Mamíferos , Cruzamentos Genéticos , DNA Concatenado/química , Genes Dominantes , Genes Recessivos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Linhagem , Fenótipo , Sindactilia/genética , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...