Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 24(19): 4798-4807, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084839

RESUMO

Purpose: The tumor microenvironment (TME) evolves to support tumor progression. One marker of more aggressive malignancy is hyaluronan (HA) accumulation. Here, we characterize biological and physical changes associated with HA-accumulating (HA-high) tumors.Experimental Design: We used immunohistochemistry, in vivo imaging of tumor pH, and microdialysis to characterize the TME of HA-high tumors, including tumor vascular structure, hypoxia, tumor perfusion by doxorubicin, pH, content of collagen. and smooth muscle actin (α-SMA). A novel method was developed to measure real-time tumor-associated soluble cytokines and growth factors. We also evaluated biopsies of murine and pancreatic cancer patients to investigate HA and collagen content, important contributors to drug resistance.Results: In immunodeficient and immunocompetent mice, increasing tumor HA content is accompanied by increasing collagen content, vascular collapse, hypoxia, and increased metastatic potential, as reflected by increased α-SMA. In vivo treatment of HA-high tumors with PEGylated recombinant human hyaluronidase (PEGPH20) dramatically reversed these changes and depleted stores of VEGF-A165, suggesting that PEGPH20 may also diminish the angiogenic potential of the TME. Finally, we observed in xenografts and in pancreatic cancer patients a coordinated increase in HA and collagen tumor content.Conclusions: The accumulation of HA in tumors is associated with high tIP, vascular collapse, hypoxia, and drug resistance. These findings may partially explain why more aggressive malignancy is observed in the HA-high phenotype. We have shown that degradation of HA by PEGPH20 partially reverses this phenotype and leads to depletion of tumor-associated VEGF-A165. These results encourage further clinical investigation of PEGPH20. Clin Cancer Res; 24(19); 4798-807. ©2018 AACR.


Assuntos
Carcinogênese/genética , Colágeno/metabolismo , Hialuronoglucosaminidase/administração & dosagem , Neoplasias/terapia , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Colágeno/genética , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/genética , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biophys J ; 110(9): 2106-19, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166818

RESUMO

Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.


Assuntos
Adenocarcinoma/patologia , Líquido Extracelular/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Líquido Extracelular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Pressão Hidrostática , Camundongos , Células NIH 3T3 , Neoplasias Pancreáticas/metabolismo , Viscosidade
3.
Biomed Res Int ; 2014: 817613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147816

RESUMO

Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extracellular hyaluronan accumulation. Treatment with pegylated human recombinant hyaluronidase (PEGPH20) removed extracellular hyaluronan and dramatically decreased the growth rate of BxPC-3 HAS3 tumors compared to parental tumors. PEGPH20 had a weaker effect on HAS2-overexpressing tumors which grew more slowly and contained both extracellular and intracellular hyaluronan. Accumulation of hyaluronan was associated with loss of plasma membrane E-cadherin and accumulation of cytoplasmic ß-catenin, suggesting disruption of adherens junctions. PEGPH20 decreased the amount of nuclear hypoxia-related proteins and induced translocation of E-cadherin and ß-catenin to the plasma membrane. Translocation of E-cadherin was also seen in tumors from a transgenic mouse model of pancreatic cancer and in a human non-small cell lung cancer sample from a patient treated with PEGPH20. In conclusion, hyaluronan accumulation by HAS3 favors pancreatic cancer growth, at least in part by decreasing epithelial cell adhesion, and PEGPH20 inhibits these changes and suppresses tumor growth.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/fisiologia , Animais , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Hialuronan Sintases , Hialuronoglucosaminidase/metabolismo , Camundongos , beta Catenina/metabolismo
5.
Anticancer Res ; 32(4): 1203-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22493350

RESUMO

BACKGROUND: The tumor microenvironment is an emerging source of novel therapeutic targets in cancer. The glycosaminoglycan hyaluronan (HA) accumulates in 20-30% of tumors and is often associated with poor prognosis. MATERIALS AND METHODS: We developed a digitized, semiquantitative scoring system for tumor-associated HA content, then grouped tumors (from animal models or patients) according to the degree of HA accumulation (HA+1,2,3). The antitumor response to HA-depletion by pegylated PH20 hyaluronidase (PEGPH20) was then characterized as a function of HA accumulation. RESULTS: Semiquantitative grouping of tumors demonstrated that HA accumulation predicts the response of tumors in animal models to PEGPH20. Prospective analysis of HA content was used to predict response to PEGPH20 of squamous cell-type explants from patients with non-small cell lung cancer in nude mice. CONCLUSION: Measurement of HA is a viable biomarker approach for predicting antitumor response in animal models to the HA-depleting agent, PEGPH20.


Assuntos
Neoplasias Experimentais/terapia , Microambiente Tumoral , Animais , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Primers do DNA , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Nus , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 9(11): 3052-64, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978165

RESUMO

Hyaluronan (HA) is a glycosaminoglycan polymer that often accumulates in malignancy. Megadalton complexes of HA with proteoglycans create a hydrated connective tissue matrix, which may play an important role in tumor stroma formation. Through its colloid osmotic effects, HA complexes contribute to tumor interstitial fluid pressure, limiting the effect of therapeutic molecules on malignant cells. The therapeutic potential of enzymatic remodeling of the tumor microenvironment through HA depletion was initially investigated using a recombinant human HA-degrading enzyme, rHuPH20, which removed HA-dependent tumor cell extracellular matrices in vitro. However, rHuPH20 showed a short serum half-life (t(1/2) < 3 minutes), making depletion of tumor HA in vivo impractical. A pegylated variant of rHuPH20, PEGPH20, was therefore evaluated. Pegylation improved serum half-life (t(1/2) = 10.3 hours), making it feasible to probe the effects of sustained HA depletion on tumor physiology. In high-HA prostate PC3 tumors, i.v. administration of PEGPH20 depleted tumor HA, decreased tumor interstitial fluid pressure by 84%, decreased water content by 7%, decompressed tumor vessels, and increased tumor vascular area >3-fold. Following repeat PEGPH20 administration, tumor growth was significantly inhibited (tumor growth inhibition, 70%). Furthermore, PEGPH20 enhanced both docetaxel and liposomal doxorubicin activity in PC3 tumors (P < 0.05) but did not significantly improve the activity of docetaxel in low-HA prostate DU145 tumors. The ability of PEGPH20 to enhance chemotherapy efficacy is likely due to increased drug perfusion combined with other tumor structural changes. These results support enzymatic remodeling of the tumor stroma with PEGPH20 to treat tumors characterized by the accumulation of HA.


Assuntos
Antineoplásicos/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/farmacologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/farmacologia , Animais , Antineoplásicos/administração & dosagem , Células CHO , Moléculas de Adesão Celular/administração & dosagem , Moléculas de Adesão Celular/farmacocinética , Cricetinae , Cricetulus , Sinergismo Farmacológico , Humanos , Hialuronoglucosaminidase/administração & dosagem , Hialuronoglucosaminidase/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Nus , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...