Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(3): 1622-1632, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357438

RESUMO

A series of copolymers have been prepared via thiol-ene polymerization of bioderived α,ω-unsaturated diene monomers with dithiols toward application as solid polymer electrolytes (SPEs) for Li+-ion conduction. Amorphous polyesters and polyethers with low Tg's (-31 to -11 °C) were first prepared from xylose-based monomers (with varying lengths of fatty acid moiety) and 2,2'-(ethylenedioxy)diethanethiol (EDT). Cross-linking by incorporation of a trifunctional monomer also produced a series of SPEs with ionic conductivities up to 2.2 × 10-5 S cm-1 at 60 °C and electrochemical stability up to 5.08 V, a significant improvement over previous xylose-derived materials. Furthermore, a series of copolymers bearing nucleoside moieties were prepared to exploit the complementary base-pairing interaction of nucleobases. Flexible, transparent, and reprocessable SPE films were thus prepared with improved ionic conductivity (up to 1.5 × 10-4 S cm-1 at 60 °C), hydrolytic degradability, and potential self-healing capabilities.

2.
ACS Appl Energy Mater ; 6(5): 2924-2935, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36936513

RESUMO

This report describes the synthesis and characterization of organogels by reaction of a diol-containing polyether, derived from the sugar d-xylose, with 1,4-phenylenediboronic acid (PDBA). The cross-linked materials were analyzed by infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), scanning electron microscopy (FE-SEM), and rheology. The rheological material properties could be tuned: gel or viscoelastic behavior depended on the concentration of polymer, and mechanical stiffness increased with the amount of PDBA cross-linker. Organogels demonstrated self-healing capabilities and recovered their storage and loss moduli instantaneously after application and subsequent strain release. Lithiated organogels were synthesized through incorporation of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) into the cross-linked matrix. These lithium-borate polymer gels showed a high ionic conductivity value of up to 3.71 × 10-3 S cm-1 at 25 °C, high lithium transference numbers (t + = 0.88-0.92), and electrochemical stability (4.51 V). The gels were compatible with lithium-metal electrodes, showing stable polarization profiles in plating/stripping tests. This system provides a promising platform for the production of self-healing gel polymer electrolytes (GPEs) derived from renewable feedstocks for battery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...