Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(8): 2176-2192, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38328814

RESUMO

Educating new students in miniaturization science remains challenging due to the non-intuitive behavior of microscale objects and specialized layer-by-layer assembly approaches. In our analysis of the existing literature, we noted that it remains difficult to have low cost activities that elicit deep learning. Furthermore, few activities have stated learning goals and measurements of effectiveness. To that end, we created a new educational activity that enables students to build and test microfluidic mixers, valves, and bubble generators in the classroom setting with inexpensive, widely-available materials. Although undergraduate and graduate engineering students are able to successfully construct the devices, our activity is unique in that the focus is not on successfully building and operating each device. Instead, it is to gain understanding about miniaturization science, device design, and construction so as to be able to do so independently. Our data show that the activity is appropriate for developing the conceptual understanding of graduate and advanced undergraduate students (n = 57), as well as makes a lasting impression on the students. We also report on observations related to student patterns of misunderstanding and how miniaturization science provides a unique opportunity for educational researchers to elicit and study misconceptions. More broadly, since this activity teaches participants a viable approach to creating microsystems and can be implemented in nearly any global setting, our work democratizes the education of miniaturization science. Noting the broad potential of point-of-care technologies in the global setting, such an activity could empower local experts to address their needs.

2.
Nat Commun ; 14(1): 5022, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596311

RESUMO

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.


Assuntos
Inteligência Artificial , Microfluídica , Microscopia , Software , Células Sanguíneas
3.
J Thromb Haemost ; 21(9): 2339-2353, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331517

RESUMO

Mechanotransduction is the ability of cells to "feel" or sense their mechanical microenvironment and integrate and convert these physical stimuli into adaptive biochemical cellular responses. This phenomenon is vital for the physiology of numerous nucleated cell types to affect their various cellular processes. As the main drivers of hemostasis and clot retraction, platelets also possess this ability to sense the dynamic mechanical microenvironments of circulation and convert those signals into biological responses integral to clot formation. Like other cell types, platelets leverage their "hands" or receptors/integrins to mechanotransduce important signals in responding to vascular injury to achieve hemostasis. The clinical relevance of cellular mechanics and mechanotransduction is imperative as pathologic alterations or aberrant mechanotransduction in platelets has been shown to lead to bleeding and thrombosis. As such, the aim of this review is to provide an overview of the most recent research related to platelet mechanotransduction, from platelet generation to platelet activation, within the hemodynamic environment and clot contraction at the site of vascular injury, thereby covering the entire "life cycle" of platelets. Additionally, we describe the key mechanoreceptors in platelets and discuss the new biophysical techniques that have enabled the field to understand how platelets sense and respond to their mechanical microenvironment via those receptors. Finally, the clinical significance and importance of continued exploration of platelet mechanotransduction have been discussed as the key to better understanding of both thrombotic and bleeding disorders lies in a more complete mechanistic understanding of platelet function by way of mechanotransduction.


Assuntos
Trombose , Lesões do Sistema Vascular , Humanos , Plaquetas/metabolismo , Mecanotransdução Celular/fisiologia , Lesões do Sistema Vascular/patologia , Hemostasia , Ativação Plaquetária/fisiologia , Trombose/metabolismo
4.
Lab Chip ; 23(13): 2877-2898, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37282629

RESUMO

Advances in microsystem engineering have enabled the development of highly controlled models of the liver that better recapitulate the unique in vivo biological conditions. In just a few short years, substantial progress has been made in creating complex mono- and multi-cellular models that mimic key metabolic, structural, and oxygen gradients crucial for liver function. Here we review: 1) the state-of-the-art in liver-centric microphysiological systems and 2) the array of liver diseases and pressing biological and therapeutic challenges which could be investigated with these systems. The engineering community has unique opportunities to innovate with new liver-on-a-chip devices and partner with biomedical researchers to usher in a new era of understanding of the molecular and cellular contributors to liver diseases and identify and test rational therapeutic modalities.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microfisiológicos , Fígado/metabolismo
5.
iScience ; 25(1): 103690, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059605

RESUMO

Blood clot contraction plays an important role in wound healing and hemostasis. Although clot contraction is known to be driven by platelets, how single platelet forces relate to the forces generated by macroscopic clots remains largely unknown. Using our microfabricated high-throughput platelet contraction cytometer, we find that single platelets have an average force of 34 nN ( n = 10 healthy individuals). However, multiple bulk clot experiments predict a mean single platelet force lower than 0.5 nN. To resolve this discrepancy, we use a mesoscale computational model to probe the mechanism by which individual platelets induce forces in macroscopic clots. Our experimentally informed model shows that the number of platelets in the clot cross-section defines the net clot force. We provide a relationship between single platelet force and the clot force that is useful for better understanding of blood disorders associated with bleeding and thrombosis, and facilitates the development of platelet-based and platelet-mimetic biomaterials.

6.
Pediatr Blood Cancer ; 69(4): e29566, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084100

RESUMO

Health education for children with chronic illnesses (i.e., sickle cell disease [SCD]) has focused on educating adult caregivers with minimal consideration to educating the pediatric patients. We introduce a pediatric-focused educational paradigm, health-related knowledge (HRK), teaching pediatric patients developmentally appropriate general health literacy, and disease-specific knowledge. Using science, technology, engineering, and mathematics (STEM) education concepts, pediatric-specific HRK interactive activities address educational gaps: (a) general STEM education; and (b) general health and disease-specific knowledge to improve clinical outcomes. Total 144 pediatric SCD patients completed HRK activities, revealing overwhelmingly positive feedback (87%). Seventy-five percent of participants in 6th grade and above demonstrated thorough understanding of the STEM/HRK topics taught.


Assuntos
Anemia Falciforme , Letramento em Saúde , Adulto , Anemia Falciforme/terapia , Cuidadores/educação , Criança , Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Humanos
7.
Biomaterials ; 274: 120828, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964792

RESUMO

Physiological processes such as blood clotting and wound healing as well as pathologies such as fibroses and musculoskeletal contractures, all involve biological materials composed of a contracting cellular population within a fibrous matrix, yet how the microscale interactions among the cells and the matrix lead to the resultant emergent behavior at the macroscale tissue level remains poorly understood. Platelets, the anucleate cell fragments that do not divide nor synthesize extracellular matrix, represent an ideal model to study such systems. During blood clot contraction, microscopic platelets actively pull fibers to shrink the macroscale clot to less than 10% of its initial volume. We discovered that platelets utilize a new emergent behavior, asynchrono-mechanical amplification, to enhanced volumetric material contraction and to magnify contractile forces. This behavior is triggered by the heterogeneity in the timing of a population of actuators. This result indicates that cell heterogeneity, often attributed to stochastic cell-to-cell variability, can carry an essential biophysical function, thereby highlighting the importance of considering 4 dimensions (space + time) in cell-matrix biomaterials. This concept of amplification via heterogeneity can be harnessed to increase mechanical efficiency in diverse systems including implantable biomaterials, swarm robotics, and active polymer composites.


Assuntos
Plaquetas , Trombose , Coagulação Sanguínea , Fibrina , Humanos , Cicatrização
9.
Platelets ; 31(5): 570-579, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32106734

RESUMO

As the anucleate cells responsible for hemostasis and thrombosis, platelets are exposed to a myriad of biophysical and biochemical stimuli within vasculature and heterogeneous blood clots. Highly controlled, reductionist in vitro imaging studies have been instrumental in providing a detailed and quantitative understanding of platelet biology and behavior, and have helped elucidate some surprising functions of platelets. In this review, we highlight the tools and approaches that enable visualization of platelets in conjunction with precise control over the local biofluidic and biochemical microenvironment. We also discuss next generation tools that add further control over microenvironment cell stiffness or enable visualization of the interactions between platelets and endothelial cells. Throughout the review, we include pragmatic knowledge on imaging systems, experimental conditions, and approaches that have proved to be useful to our in vitro imaging studies of platelets under flow.


Assuntos
Plaquetas/metabolismo , Diagnóstico por Imagem/métodos , Hemostasia/fisiologia , Plaquetas/citologia , Humanos
10.
Semin Thromb Hemost ; 45(3): 285-296, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30566972

RESUMO

In addition to the classical biological and biochemical framework, blood clots can also be considered as active biomaterials composed of dynamically contracting platelets, nascent polymeric fibrin that functions as a matrix scaffold, and entrapped blood cells. As platelets sense, rearrange, and apply forces to the surrounding microenvironment, they dramatically change the material properties of the nascent clot, increasing its stiffness by an order of magnitude. Hence, the mechanical properties of blood clots are intricately tied to the forces applied by individual platelets. Research has also shown that the pathophysiological changes in clot mechanical properties are associated with bleeding and clotting disorders, cancer, stroke, ischemic heart disease, and more. By approaching the study of hemostasis and thrombosis from a biophysical and mechanical perspective, important insights have been made into how the mechanics of clotting and the forces applied by platelets are linked to various diseases. This review will familiarize the reader with a mechanics framework that is contextualized with relevant biology. The review also includes a discussion of relevant tools used to study platelet forces either directly or indirectly, and finally, concludes with a summary of potential links between clotting forces and disease.


Assuntos
Coagulação Sanguínea/imunologia , Plaquetas/metabolismo , Trombose/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...