Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(9): 3842-3856, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546635

RESUMO

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


Assuntos
Transtorno Bipolar , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Redes Reguladoras de Genes/genética , Cerebelo/metabolismo
2.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152017

RESUMO

A stable and efficient plasmid transfer system was developed for nitrogen-fixing symbiotic actinobacteria of the genus Frankia, a key first step in developing a genetic system. Four derivatives of the broad-host-range cloning vector pBBR1MCS were successfully introduced into different Frankia strains by a filter mating with Escherichia coli strain BW29427. Initially, plasmid pHKT1 that expresses green fluorescent protein (GFP) was introduced into Frankia casuarinae strain CcI3 at a frequency of 4.0 × 10-3, resulting in transformants that were tetracycline resistant and exhibited GFP fluorescence. The presence of the plasmid was confirmed by molecular approaches, including visualization on agarose gel and PCR. Several other pBBR1MCS plasmids were also introduced into F. casuarinae strain CcI3 and other Frankia strains at frequencies ranging from 10-2 to 10-4, and the presence of the plasmids was confirmed by PCR. The plasmids were stably maintained for over 2 years and through passage in a plant host. As a proof of concept, a salt tolerance candidate gene from the highly salt-tolerant Frankia sp. strain CcI6 was cloned into pBBR1MCS-3. The resulting construct was introduced into the salt-sensitive F. casuarinae strain CcI3. Endpoint reverse transcriptase PCR (RT-PCR) showed that the gene was expressed in F. casuarinae strain CcI3. The expression provided an increased level of salt tolerance for the transformant. These results represent stable plasmid transfer and exogenous gene expression in Frankia spp., overcoming a major hurdle in the field. This step in the development of genetic tools in Frankia spp. will open up new avenues for research on actinorhizal symbiosis.IMPORTANCE The absence of genetic tools for Frankia research has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids into Frankia spp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide array of approaches in an organism with great importance to and potential in the environment.


Assuntos
Frankia/fisiologia , Fixação de Nitrogênio , Simbiose , Tolerância ao Sal/genética
3.
Cell Syst ; 8(2): 122-135.e7, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30772379

RESUMO

Transcriptional regulatory changes in the developing and adult brain are prominent features of brain diseases, but the involvement of specific transcription factors (TFs) remains poorly understood. We integrated brain-specific DNase footprinting and TF-gene co-expression to reconstruct a transcriptional regulatory network (TRN) model for the human brain. We identified key regulator TFs whose predicted target genes were enriched for differentially expressed genes in the prefrontal cortex of individuals with psychiatric and neurodegenerative diseases. Many of these TFs were further implicated in the same diseases through disruption of their binding sites by disease-associated SNPs and associations of TF loci with disease risk. Using primary human neural stem cells, we validated network predictions that link the TF POU3F2 to schizophrenia and bipolar disorder via both cis- and trans-acting mechanisms. Our models of brain-specific TF binding sites and target genes provide a resource for network analysis of brain diseases.


Assuntos
Redes Reguladoras de Genes/genética , Genômica/métodos , Doenças Neurodegenerativas/genética , Psiquiatria/métodos , Fatores de Transcrição/genética , Feminino , Humanos , Masculino
4.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025952

RESUMO

The genus Mesorhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three Mesorhizobium strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively.

5.
BMC Genomics ; 18(1): 633, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821232

RESUMO

BACKGROUND: Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. RESULTS: Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. CONCLUSION: Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates.


Assuntos
Fagales/microbiologia , Frankia/genética , Frankia/fisiologia , Perfilação da Expressão Gênica , Proteômica , Tolerância ao Sal/genética , Árvores/microbiologia , Membrana Celular/metabolismo , Frankia/citologia , Frankia/metabolismo , Nitrogênio/farmacologia , Nucleotídeos/metabolismo , Pressão Osmótica , Fenótipo , Regulação para Cima
6.
Genome Announc ; 5(24)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619804

RESUMO

Frankia sp. strain Cc1.17 is a member of the Frankia lineage 3, the organisms of which are able to reinfect plants of the Eleagnaceae, Rhamnaceae, and Myricaceae families and the genera Gynmnostoma and Alnus Here, we report the 8.4-Mbp draft genome sequence, with a G+C content of 72.14% and 6,721 candidate protein-coding genes.

7.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473386

RESUMO

The genus Rhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 5.5-Mb draft genome sequence of the salt-tolerant Rhizobium sp. strain LCM 4573, which has a G+C content of 61.2% and 5,356 candidate protein-encoding genes.

8.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385842

RESUMO

The genus Ensifer (formerly Sinorhizobium) contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.1-Mb draft genome sequence of Ensifer sp. strain LCM 4579, with a G+C content of 62.4% and 5,613 candidate protein-encoding genes.

9.
Front Plant Sci ; 7: 1331, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630656

RESUMO

Symbiotic nitrogen-fixing associations between Casuarina trees and the actinobacteria Frankia are widely used in agroforestry in particular for salinized land reclamation. The aim of this study was to analyze the effects of salinity on the establishment of the actinorhizal symbiosis between C. glauca and two contrasting Frankia strains (salt sensitive; CcI3 vs. salt tolerant; CeD) and the role of these isolates in the salt tolerance of C. glauca and C. equisetifolia plants. We show that the number of root nodules decreased with increasing salinity levels in both plants inoculated with CcI3 and CeD. Nodule formation did not occur in seedlings inoculated with CcI3 and CeD, at NaCl concentrations above 100 and 200 mM, respectively. Salinity also affected the early deformation of plant root hairs and reduced their number and size. In addition, expression of symbiotic marker Cg12 gene, which codes for a subtilase, was reduced at 50 mM NaCl. These data suggest that the reduction of nodulation in C. glauca under salt stress is in part due to inhibition of early mechanisms of infection. We also show that prior inoculation of C. glauca and C. equisetifolia with Frankia strains CcI3 and CeD significantly improved plant height, dry biomass, chlorophyll and proline contents at all levels of salinity tested, depending on the Casuarina-Frankia association. There was no correlation between in vitro salt tolerance of Frankia strains and efficiency in planta under salt-stressed conditions. Our results strongly indicate that increased N nutrition, photosynthesis potential and proline accumulation are important factors responsible for salt tolerance of nodulated C. glauca and C. equisetifolia.

10.
Genome Announc ; 4(5)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27635010

RESUMO

Frankia sp. strain BR is a member of Frankia lineage Ic and is able to reinfect plants of the Casuarinaceae family. Here, we report a 5.2-Mbp draft genome sequence with a G+C content of 70.0% and 4,777 candidate protein-encoding genes.

11.
Genome Announc ; 4(4)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27389275

RESUMO

Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes.

12.
Genome Announc ; 4(3)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27198023

RESUMO

Frankia sp. strain Allo2 is a member of Frankia lineage Ib, which is able to reinfect plants of the Casuarinaceae family, and exhibits a high level of salt tolerance compared to other isolates. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain Allo2 with a G+C content of 70.0% and 4,224 candidate protein-encoding genes.

13.
Genome Announc ; 4(2)2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056238

RESUMO

Frankiastrain CeD is a member ofFrankialineage Ib that is able to reinfect plants of theCasuarinafamilies. Here, we report a 5.0-Mbp draft genome sequence with a G+C content of 70.1% and 3,847 candidate protein-encoding genes.

14.
Genome Announc ; 4(2)2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26988056

RESUMO

Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

15.
Genome Announc ; 4(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26769948

RESUMO

Frankia stains CpI1-S and CpI1-P are members of Frankia lineage Ia that are able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report two 7.6-Mbp draft genome sequences with 6,396 and 6,373 candidate protein-coding genes for CpI1-S and CpI1-P, respectively.

16.
Genome Announc ; 3(6)2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26679592

RESUMO

Frankia strain ACN1(ag) is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes.

17.
Genome Announc ; 3(4)2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26251504

RESUMO

Frankia sp. strain DC12, isolated from root nodules of Datisca cannabina, is a member of the fourth lineage of Frankia, which is unable to reinfect actinorhizal plants. Here, we report its 6.88-Mbp high-quality draft genome sequence, with a G+C content of 71.92% and 5,858 candidate protein-coding genes.

18.
Genome Announc ; 3(6)2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26722013

RESUMO

Frankia strain AvcI1, isolated from root nodules of Alnus viridis subsp. crispa, is a member of Frankia lineage Ia, which is able to reinfect plants of the Betulaceae and Myricaceae families. Here, we report a 7.7-Mbp draft genome sequence with a G+C content of 72.41% and 6,470 candidate protein-encoding genes.

19.
Genome Announc ; 2(3)2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24874687

RESUMO

Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.27-Mbp draft genome sequence for Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casuarina glauca collected in Tunisia.

20.
Genome Announc ; 2(3)2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855310

RESUMO

Nitrogen-fixing actinobacteria of the genus Frankia are symbionts of woody dicotyledonous plants termed actinorhizal plants. We report here a 5.3-Mbp draft genome sequence for Frankia sp. stain Thr, a nitrogen-fixing actinobacterium isolated from root nodules of Casuarina cunninghamiana collected in Egypt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...