Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944592

RESUMO

We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.

2.
Cytogenet Genome Res ; 161(1-2): 43-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33550288

RESUMO

In the present study, we aimed to check whether uterine leiomyomas (ULs) with an apparently normal karyotype in vitro comprise "hidden" cell subpopulations with numerical chromosome abnormalities (heteroploid cells). A total of 32 ULs obtained from 32 patients were analyzed in the study. Each UL was sampled for in vivo and in vitro cytogenetic studies. Karyotyping was performed on metaphase preparations from the cultured UL samples. A normal karyotype was revealed in 20 out of the 32 ULs, of which 9 were selected for further study based on the good quality of the interphase preparations. Then, using interphase FISH with centromeric DNA probes, we analyzed the copy number of chromosomes 7 and 16 in 1,000 uncultured and 1,000 cultured cells of each selected UL. All of the ULs included both disomic cells representing a predominant subpopulation and heteroploid cells reaching a maximum frequency of 21.6% (mean 9.8%) in vivo and 11.5% (mean 6.1%) in vitro. The spectrum of heteroploid cells was similar in vivo and in vitro and mostly consisted of monosomic and tetrasomic cells. However, their frequencies in the cultured samples differed from those in the uncultured ones: while the monosomic cells decreased in number, the tetrasomic cells became more numerous. The frequency of either monosomic or tetrasomic cells both in vivo and in vitro was not associated with the presence of MED12 exon 2 mutations in the tumors. Our results suggest that ULs with an apparently normal karyotype consist of both karyotypically normal and heteroploid cells, implying that the occurrence of minor cell subpopulations with numerical chromosome abnormalities may be considered a characteristic of UL tumorigenesis. Different frequencies of heteroploid cells in vivo and in vitro suggest their dependence on microenvironmental conditions, thus providing a pathway for regulation of their propagation, which may be important for the UL pathogenesis.


Assuntos
Cariotipagem , Leiomioma/genética , Neoplasias Uterinas/genética , Carcinogênese , Aberrações Cromossômicas , Citogenética , Análise Mutacional de DNA , Sondas de DNA , Éxons , Feminino , Humanos , Hibridização in Situ Fluorescente , Técnicas In Vitro , Mutação , Miomectomia Uterina
3.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817606

RESUMO

We review recent studies dealing with the molecular genetics and basic results of omics analysis of uterine leiomyoma (LM)-a common benign muscle tumor of the uterus. Whole genome studies of LM resulted in the discovery of many new gene nets and biological pathways, including its origin, transcriptomic, and epigenetic profiles, as well as the impact of the inter-cell matrix in LM growth and involvement of microRNA in its regulation. New data on somatic cell mutations ultimately involved in the origin, distribution and growth of LM are reviewed. Putative identification of LM progenitor SC (stem cells) giving rise to maternal fibroid nodes and junctional zones provide a new clue for hypotheses on the pathogenomics of LM. The reviewed data are consistent with at least two different but probably intimately interacted molecular mechanisms of LM. One of them (the genetic hypothesis) is focused primarily on the MED12 gene mutations and suggests its onset in the side population of embryonic myoblasts of the female reproductive system, which later gave rise to multiple small and medium fibroids. The single and usually large-size fibroids are induced by predominantly epigenetic disorders in LM SC, provoked by enhanced expression of the HMGA2 gene caused by its hypomethylation and epigenetic deregulation enhanced by hypoxia, muscle tension, or chromosome instability/aberrations. The pathogenomics of both genetic and epigenetic programs of LM with many peculiarities at the beginning later became rather similar and partly overlapped due to the proximity of their gene nets and epigenetic landscape. Pathogenomic studies of LM open ways for elaboration of novel strategies of prevention and treatment of this common disease.


Assuntos
Leiomioma/metabolismo , Neoplasias Uterinas/metabolismo , Útero/metabolismo , Animais , Feminino , Humanos , Leiomioma/genética , Mutação/genética , Neoplasias Uterinas/genética , Útero/patologia
4.
Front Genet ; 10: 1164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824569

RESUMO

We report on the phenotype and the reproductive history of an adult female patient with an unbalanced karyotype: 8p23 and 18p11.3 terminal deletions and 8p22 duplication. The indication for karyotyping of the 28-year-old patient was a structural rearrangement in her miscarriage specimen: 45,ХХ,der(8;18)t(8;18)(p23;p11.3). Unexpectedly, the patient had the same karyotype with only one normal chromosome 8, one normal chromosome 18, and a derivative chromosome, which was a product of chromosomes 8 and 18 fusion with loss of their short arm terminal regions. Fluorescence in situ hybridization revealed that derivative chromosome was a pseudodicentric with an active centromere of chromosome 8. Array comparative genomic hybridization confirmed 8p and 18p terminal deletions and additionally revealed 8p22 duplication with a total of 43 OMIM annotated genes being affected by the rearrangement. The patient had minor facial and cranial dysmorphia and no pronounced physical or mental abnormalities. She was socially normal, had higher education and had been married since the age of 26 years. Considering genetic counseling, the patient had decided to conceive the next pregnancy through in vitro fertilization (IVF) with preimplantation genetic testing for structural chromosomal aberrations (PGT-SR). She underwent four IVF/PGT-SR cycles with a total of 25 oocytes obtained and a total of 10 embryos analyzed. Only one embryo was balanced regarding chromosomes 8 and 18, while the others were unbalanced and demonstrated different combinations of the normal chromosomes 8 and 18 and the derivative chromosome. The balanced embryo was transferred, but the pregnancy was not registered. After four unsuccessful IVF/PGT-SR cycles, the patient conceived naturally. Non-invasive prenatal testing showed additional chromosome 18. The prenatal cytogenetic analysis of chorionic villi revealed an abnormal karyotype: 46,ХХ,der(8;18)t(8;18)(p23;p11.3)mat,+18. The pregnancy was terminated for medical reasons. The patient has a strong intention to conceive a karyotypically normal fetus. However, genetic counseling regarding this issue is highly challenging. Taking into account a very low chance of balanced gametes, emotional stress caused by numerous unsuccessful attempts to conceive a balanced embryo and increasing age of the patient, an IVF cycle with a donor oocyte should probably be considered.

6.
J Clin Pathol ; 70(3): 233-236, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27491313

RESUMO

AIMS: To study the possible association of catechol-O-methyltransferase (COMT) Val158Met polymorphism with multiple and solitary uterine leiomyomas (ULs) and to check whether the COMT Val/Val genotype is associated with MED12 exon 2 mutations in fibroids. METHODS: The COMT Val158Met allele and genotype frequencies were compared between age-matched women with ULs (n=104) and controls (n=59). Patients with UL were subcategorised by diagnosis of solitary (n=59) or multiple (n=45) fibroids and by the presence of somatic MED12 exon 2 mutations in at least one fibroid (n=32) or in neither fibroid (n=26). The association of COMT Val/Val genotype with the presence of any ULs, solitary/multiple ULs and ULs positive/negative for MED12 exon 2 mutations was evaluated by χ2 tests using a dominant genotype model (G/G vs G/A+A/A) and expressed as ORs and 95% CIs. RESULTS: The COMT Val/Val genotype frequency did not differ between the patients with UL and the controls (28.8% vs 18.6%, p=0.149, OR 1.77; CI 0.81 to 3.86). However, it was significantly higher in the patients who had multiple UL compared with the solitary UL (40% vs 20.3%, p=0.028, OR 2.61; CI 1.09 to 6.24) and to the controls (40% vs 18.6%, p=0.016, OR 2.91; CI 1.20 to 7.06). No association of the COMT Val/Val genotype with UL-specific MED12 exon 2 mutations was found (p=0.662, OR 0.77; CI 0.23 to 2.53). CONCLUSIONS: Women with COMT Val/Val genotype are at high risk of developing multiple uterine fibroids either positive or negative for MED12 exon 2 mutations. These data are important to design new strategies for UL prophylaxis and treatment.


Assuntos
Catecol O-Metiltransferase/genética , Leiomioma/genética , Complexo Mediador/genética , Mutação , Polimorfismo de Nucleotídeo Único , Neoplasias Uterinas/genética , Adulto , Análise Mutacional de DNA , Éxons , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Pessoa de Meia-Idade , Adulto Jovem
7.
Int J Gynecol Pathol ; 35(6): 509-515, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26630226

RESUMO

Uterine leiomyomas (ULs) are common benign tumors affecting women of different ethnicities. A large proportion of UL has mutations in MED12. Multiple and solitary ULs usually manifest with different severities, suggesting that their origin and growth pattern may be driven by different molecular mechanisms. Here, we compared the frequency and the spectrum of MED12 exon 2 mutations between multiple (n=82) and solitary (n=40) ULs from Russian patients. Overall, we detected MED12 exon 2 mutations in 51.6% (63/122) of ULs. The frequency of MED12 exon 2 mutations was almost two-fold higher in samples from the multiple UL patients than in those from the solitary UL patients - 61% (50/82) versus 32.5% (13/40). The increased MED12 exon 2 mutation frequency in the multiple ULs was not accompanied by significant alterations in the spectrum of mutation categories, which included missense mutations, deletions, splicing defects, and multiple (double/triple) mutations. Each mutation category had a unique mutation set, comprising both frequent and rarely encountered mutations, which did and did not overlap between the studied groups, respectively. We conclude that in contrast to the solitary ULs, the multiple ULs predominantly originate through MED12-associated mechanisms. The nature of these mechanisms seems to be similar in solitary and multiple ULs, as they contain similar mutations. In multiple UL patients, they are likely to be nonsporadic, indicating the existence of specific factors predisposing to multiple UL development. These data suggest that to clearly understand UL pathogenesis, solitary and multiple tumors should probably be analyzed as separate sets.


Assuntos
Leiomioma/genética , Leiomiomatose/genética , Complexo Mediador/genética , Mutação , Neoplasias Uterinas/genética , Análise Mutacional de DNA , Éxons , Feminino , Humanos , Leiomioma/patologia , Leiomiomatose/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Federação Russa , Neoplasias Uterinas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...