Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875174

RESUMO

The lake minnow Eupallasella percnurus is a small leuciscid fish. In Poland, this species has been in a continuous decline since the mid-20th century and is presently considered as a extremely endangered. According to Polish law, E. percnurus is a strictly protected species that requires active conservation measures. In Poland, one the most common and effective measure of active protection E. percnurus is initiation of new populations. For this purpose, in 2004-2012, juvenile individuals originating from aquaculture conditions were translocated to group of isolated water bodies not inhabited by this species. The juveniles were offspring of parental fish belonging to the same local population, which is extinct at present. Five of those attempts were successful. The aim of the present study was to assess the genetic variation in a group new populations and compare genetic variation indicators with 13 old populations that had existed for decades. The polymorphism of 13 microsatellite markers was investigated, significance of differences in the genetic variation indicators between the groups were tested using a one-way analysis of variance (ANOVA). The mean values of all summary statistics under study, i.e. observed heterozygosity, expected heterozygosity and the total number of alleles, were higher in the group of new populations compared to almost all old ones. A similar dependence was found for Garza-Williamson M values, where the mean for the group of new populations was higher than in almost all old populations. Our results indicate that all recently established E. percnurus populations have not yet experienced any extensive founder effects or bottlenecks. They have preserved a large part of the genetic variability typical of their maternal population, which might also have been relatively high. This feature of new populations, may give them a relatively high ability to adapt to changing environments in the future.


Assuntos
Cyprinidae , Espécies em Perigo de Extinção , Variação Genética , Repetições de Microssatélites , Animais , Polônia , Repetições de Microssatélites/genética , Cyprinidae/genética , Lagos , Conservação dos Recursos Naturais , Genética Populacional
2.
Environ Int ; 178: 108089, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37441817

RESUMO

Antimicrobial resistance (AMR) is a global threat to human and animal health and well-being. To understand AMR dynamics, it is important to monitor resistant bacteria and resistance genes in all relevant settings. However, while monitoring of AMR has been implemented in clinical and veterinary settings, comprehensive monitoring of AMR in the environment is almost completely lacking. Yet, the environmental dimension of AMR is critical for understanding the dissemination routes and selection of resistant microorganisms, as well as the human health risks related to environmental AMR. Here, we outline important knowledge gaps that impede implementation of environmental AMR monitoring. These include lack of knowledge of the 'normal' background levels of environmental AMR, definition of high-risk environments for transmission, and a poor understanding of the concentrations of antibiotics and other chemical agents that promote resistance selection. Furthermore, there is a lack of methods to detect resistance genes that are not already circulating among pathogens. We conclude that these knowledge gaps need to be addressed before routine monitoring for AMR in the environment can be implemented on a large scale. Yet, AMR monitoring data bridging different sectors is needed in order to fill these knowledge gaps, which means that some level of national, regional and global AMR surveillance in the environment must happen even without all scientific questions answered. With the possibilities opened up by rapidly advancing technologies, it is time to fill these knowledge gaps. Doing so will allow for specific actions against environmental AMR development and spread to pathogens and thereby safeguard the health and wellbeing of humans and animals.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Bactérias/genética , Monitoramento Ambiental
3.
Environ Sci Pollut Res Int ; 30(5): 11572-11583, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36094711

RESUMO

Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This study aimed to determine the applicability of various methods for identifying E. coli strains in environmental samples. Bacterial strains preliminary selected on mFc and Chromocult media as E. coli were identified using MALDI Biotyper techniques, based on the presence of genes characteristic of E. coli (uidA, uspA, yaiO), as well as by 16S rRNA gene sequencing. The virulence and antibiotic resistance genes pattern of bacterial strains were also analyzed to investigate the prevalence of factors that may indicate adaptation to unsupportive environmental conditions and could have any significance in further identification of E. coli. Of the strains that had been initially identified as E. coli with culture-based methods, 36-81% were classified as E. coli with the use of selected techniques. The value of Cohen's kappa revealed the highest degree of agreement between the results of 16S rRNA gene sequencing, the results obtained in the MALDI Biotyper system, and the results of the analysis based on the presence of the yaiO gene. The results of this study could help in the selection of more accurate and reliable methods which can be used in a preliminary screening and more precise identification of E. coli isolated from environmental samples.


Assuntos
Bactérias , Escherichia coli , RNA Ribossômico 16S/genética , Bactérias/genética , Virulência
4.
Bioinformatics ; 37(1): 121-122, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33393985

RESUMO

SUMMARY: Sequencing of transposon insertion libraries is used to determine the relative fitness of individual mutants at a large scale. However, there is a lack of tools for specifically analyzing data from such experiments with paired sample designs. Here, we introduce CAFE-Coefficient-based Analysis of Fitness by read Enrichment-a software package that can analyze data from paired transposon mutant sequencing experiments, generate fitness coefficients for each gene and condition and perform appropriate statistical testing on these fitness coefficients. AVAILABILITY AND IMPLEMENTATION: CAFE is implemented in Perl and R. The source code is freely available for download under the MIT License from https://github.com/bengtssonpalme/cafe and http://microbiology.se/software/cafe/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33003501

RESUMO

The aim of this study was to evaluate the applicability of markers specific to Bacteroides fragilis group (BFG) bacteria as indicators of anthropogenic pollution of surface waters. In addition, the impact of wastewater treatment plants (WWTPs) on the spread of genes specific to fecal indicator bacteria and genes encoding antimicrobial resistance in water bodies was also determined. Samples of hospital wastewater (HWW), untreated wastewater (UWW), and treated wastewater (TWW) evacuated from a WWTP were collected, and samples of river water were taken upstream (URW) and downstream (DRW) from the wastewater discharge point to determine, by qPCR, the presence of genes specific to BFG, Escherichia coli and Enterococcus faecalis, and the abundance of 11 antibiotic resistance genes (ARGs) and two integrase genes. The total number of bacterial cells (TCN) in the examined samples was determined by fluorescence in situ hybridization (FISH). Genes specific to BFG predominated among the analyzed indicator microorganisms in HWW, and their copy numbers were similar to those of genes specific to E. coli and E. faecalis in the remaining samples. The abundance of genes specific to BFG was highly correlated with the abundance of genes characteristic of E. coli and E. faecalis, all analyzed ARGs and intI genes. The results of this study indicate that genes specific to BFG can be used in analyses of human fecal pollution, and as indicators of environmental contamination with ARGs. A significant increase in the copy numbers of genes specific to BFG, E. coli, and seven out of the 11 analyzed ARGs was noted in samples of river water collected downstream from the wastewater discharge point, which suggests that WWTPs are an important source of these genes in riparian environments.


Assuntos
Antibacterianos/farmacologia , Bacteroides fragilis/isolamento & purificação , Resistência Microbiana a Medicamentos/genética , Águas Residuárias/química , Bactérias/genética , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/genética , Escherichia coli , Genes Bacterianos , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase
6.
J Hazard Mater ; 394: 122544, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224375

RESUMO

The aim of this study was to determine the effect of the activated sludge process on the abundance of anaerobic bacteria of the phylum Bacteroidetes, with special emphasis on Bacteroides fragilis group (BFG) bacteria, in twelve full-scale wastewater treatment plants. The composition of bacterial phyla and classes in wastewater samples were analyzed by next-generation sequencing. The presence of specific to BFG bacteria genes and the abundance of ARGs and genes encoding class 1 integrase in wastewater samples were determined by qPCR. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were dominant bacterial phyla in wastewater samples. Next-generation sequencing revealed similar proportions of Bacteroidia (<1.0-8.2 % of all bacteria) in wastewater influents and effluents, which suggest that these microorganisms are not completely eliminated in the activated sludge process. The average copy numbers of specific to BFG bacteria gene, were 106, and 104 copies in 1 mL of wastewater influents and effluents, respectively. The results revealed a correlation between the abundance of BFG bacteria and BFG-specific genes encoding resistance to antibiotics. The observed changes in the prevalence of BFG-specific genes and ARGs in untreated and treated wastewater indicate that the activated sludge process decreases the number of gene copies in the effluent evacuated to the environment.


Assuntos
Bacteroides fragilis/efeitos dos fármacos , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Genes Bacterianos/efeitos dos fármacos , Esgotos/química , Purificação da Água/métodos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Sequência de Bases , DNA Bacteriano/análise , Esgotos/microbiologia
7.
J Hazard Mater ; 381: 121221, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31561123

RESUMO

Wastewater treatment plants (WWTPs) are significant source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which can spread further in the environment by reaching rivers together with effluents discharged from WWTPs. In this study untreated and treated wastewater (UWW, TWW), upstream and downstream river water (URW, DRW) were collected from 4 WWTPs, in the winter and autumn seasons. The occurrence of ARB resistant to beta-lactams and tetracyclines as well as the presence of antibiotics from these classes were analysed in water and wastewater samples. Additionally, the amounts of 12 ARGs, 2 genes of mobile genetic elements (MGEs), gene uidA identifying E. coli and 16S rRNA were also determined. Resistance to beta-lactams prevailed among ARB in water and wastewater samples (constituting 82-88% of total counts of bacteria). The dominant genes in water and wastewater samples were blaTEM, tetA, sul1. The gene blaOXA demonstrated high variability of its concentration in samples collected in both seasons. Despite the high per cent reduction of ARB and ARGs concentration observed during the wastewater treatment processes, their large quantities are still transmitted into the environment. The research focuses on WWTPs' role in the dissemination of ARGs and MGEs in the aquatic environment.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Eliminação de Resíduos Líquidos , Antibacterianos/análise , Bactérias/genética , Bactérias/isolamento & purificação , Doxiciclina/análise , Estações do Ano , Águas Residuárias/análise , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise
8.
Environ Int ; 124: 408-419, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30682596

RESUMO

Anaerobic bacteria of the genus Bacteroides are a large group of commensal microorganisms that colonize the human and animal digestive tract. The genus Bacteroides and the closely related genus Parabacteroides include the Bacteroides fragilis group (BFG) of potentially pathogenic bacteria which are frequently isolated from patients with anaerobic infections. The aim of this study was to assess the antimicrobial resistance of environmental strains of the Bacteroides fragilis group. Strains were isolated from human feces, hospital wastewater, influent (UWW) and effluent (TWW) wastewater from a wastewater treatment plant (WWTP), and from the feces of lab rats as a negative control to monitor the entire route of transmission of BFG strains from humans to the environment. The resistance of 123 environmental BFG strains to six antibiotic groups was analyzed with the use of culture-dependent methods. Additionally, the presence of 25 genes encoding antibiotic resistance was determined by PCR. The analyzed environmental BFG strains were highly resistant to the tested antibiotics. The percentage of resistant strains differed between the analyzed antibiotics and was determined at 97.56% for ciprofloxacin, 49.59% for erythromycin, 44.71% for ampicillin, 35.77% for tetracycline, 32.52% for amoxicillin/clavulanic acid, 26.83% for chloramphenicol, 26.01% for clindamycin, 11.38% for moxifloxacin, and 8.94% for metronidazole. The highest drug-resistance levels were observed in the strains isolated from UWW and TWW samples. The mechanisms of antibiotic-resistance were determined in phenotypically resistant strains of BFG. Research has demonstrated the widespread presence of genes encoding resistance to chloramphenicol (100% of all chloramphenicol-resistant strains), tetracyclines (97.78% of all tetracycline-resistant strains), macrolides, lincosamides and streptogramins (81.97% of all erythromycin-resistant strains). Genes encoding resistance to ß-lactams and fluoroquinolones were less prevalent. None of the metronidazole-resistant strains harbored the gene encoding resistance to nitroimidazoles. BFG strains isolated from UWW and TWW samples were characterized by the highest diversity of antibiotic-resistance genes and were most often drug-resistant and multidrug-resistant. The present study examines the potential negative consequences of drug-resistant and multidrug-resistant BFG strains that are evacuated with treated wastewater into the environment. The transmission of these bacteria to surface water bodies can pose potential health threats for humans and animals; therefore, the quality of treated wastewater should be strictly monitored.


Assuntos
Antibacterianos/farmacologia , Bacteroides fragilis/efeitos dos fármacos , Farmacorresistência Bacteriana , Animais , Bacteroides fragilis/isolamento & purificação , Farmacorresistência Bacteriana/genética , Fezes/microbiologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Ratos , Águas Residuárias/microbiologia
9.
Sci Total Environ ; 577: 367-375, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27816226

RESUMO

Antibiotics are widely used in human and veterinary medicine and in animal production, which increases their concentrations in aquatic ecosystems and contributes to selective pressure on environmental microorganisms. The objective of this study was to identify antibiotic resistance determinants in Escherichia coli strains isolated from untreated and treated wastewater (UWW and TWW) and from river water sampled downstream and upstream (URW and DRW) from the effluent discharge point. The analyzed antibiotic groups were beta-lactams, tetracyclines and fluoroquinolones which are widely used in human and veterinary medicine. The virulence of the isolated E. coli strains was also analyzed, and their clonal relatedness was determined by ERIC (enterobacterial repetitive intergenic consensus sequence) PCR. The highest counts of bacteria resistant to beta-lactams, tetracyclines and fluoroquinolones were noted in UWW at 6.4×104, 4.2×104 and 3.1×103CFU/mL, respectively. A total of 317 E. coli isolates resistant to at least one group of antibiotics were selected among bacterial isolates from river water and wastewater samples. Nearly 38% of those isolates were resistant to all of the tested antibiotics. The highest percent (43%) of multidrug-resistant isolates was noted in UWW samples. Isolates resistant to beta-lactams most frequently harbored blaTEM and blaOXA genes. The group of genes encoding resistance to tetracyclines was most frequently represented by tetA, tetB and tetK, whereas the qnrS gene was noted in isolates resistant to fluoroquinolones. Virulence genes bfpA (65%), ST (56%) and eae (39%) were most widely distributed in all isolates, regardless of their origin. The results of this experiment reveal the dangers associated with environmental contamination by drug-resistant and virulent E. coli strains distributed with treated wastewater. Multidrug resistance was determined more frequently in strains isolated from DRW than in isolates from URW samples. Our findings provide valuable inputs for evaluating public health hazards associated with bacterial contamination.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli/isolamento & purificação , Águas Residuárias/microbiologia , Antibacterianos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Polônia
10.
Environ Sci Pollut Res Int ; 23(11): 10818-10831, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26893181

RESUMO

Fluoroquinolones (FQs) are fully synthetic broad-spectrum antibacterial agents that are becoming increasingly popular in the treatment of clinical and veterinary infections. Being excreted during treatment, mostly as active compounds, their biological action is not limited to the therapeutic site, but it is moved further as resistance selection pressure into the environment. Water environment is an ideal medium for the aggregation and dissemination of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs), which can pose a serious threat to human health. Because of this, the aim of this study was to determine the number of fluoroquinolone-resistant bacteria (FQRB) and their share in total heterotrophic plate counts (HPC) in treated wastewater (TWW), and upstream and downstream river water (URW, DRW) samples where TWW is discharged. The spread of plasmid-mediated quinolone resistance (PMQR) determinants and the presence/absence of resistance genes to other most popular antibiotic groups (against tetracyclines and beta-lactams) in selected 116 multiresistant isolates were investigated. The share of FQRB in total HPC in all samples was rather small and ranged from 0.7 % in URW samples to 7.5 % in TWW. Bacteria from Escherichia (25.0 %), Acinetobacter (25.0 %), and Aeromonas (6.9 %) genera were predominant in the FQRB group. Fluoroquinolone resistance was mostly caused by the presence of the gene aac(6')-1b-cr (91.4 %). More rarely reported was the occurrence of qnrS, qnrD, as well as oqxA, but qnrA, qnrB, qepA, and oqxB were extremely rarely or never noted in FQRB. The most prevalent bacterial genes connected with beta-lactams' resistance in FQRB were bla TEM, bla OXA, and bla CTX-M. The bla SHV was less common in the community of FQRB. The occurrence of bla genes was reported in almost 29.3 % of FQRB. The most abundant tet genes in FQRB were tet(A), tet(L), tet(K), and tet(S). The prevalence of tet genes was observed in 41.4 % of FQRB. The highest prevalence of multidrug-resistant (MDR) microorganisms was detected in TWW and DRW samples. It indicates that discharged TWW harbors multiresistant bacterial strains and that mobile PMQR and ARGs elements may have a selective pressure for species affiliated to bacteria in the river water.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmídeos/genética , Esgotos/microbiologia , Frequência do Gene , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Rios/microbiologia , Seleção Genética , Tetraciclinas , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...