Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 101(2-1): 022903, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168713

RESUMO

We investigate numerically and analytically size-polydisperse granular mixtures immersed into a molecular gas. We show that the equipartition of granular temperatures of particles of different sizes is established; however, the granular temperatures significantly differ from the temperature of the molecular gas. This result is surprising since, generally, the energy equipartition is strongly violated in driven granular mixtures. Qualitatively, the obtained results do not depend on the collision model, being valid for a constant restitution coefficient ɛ, as well as for the ɛ for viscoelastic particles. Our findings may be important for astrophysical applications, such as protoplanetary disks, interstellar dust clouds, and comets.

2.
Sci Rep ; 10(1): 693, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959873

RESUMO

We study analytically and numerically the distribution of granular temperatures in granular mixtures for different dissipation mechanisms of inelastic inter-particle collisions. Both driven and force-free systems are analyzed. We demonstrate that the simplified model of a constant restitution coefficient fails to predict even qualitatively a granular temperature distribution in a homogeneous cooling state. At the same time we reveal for driven systems a stunning result - the distribution of temperatures in granular mixtures is universal. That is, it does not depend on a particular dissipation mechanism of inter-particles collisions, provided the size distributions of particles is steep enough. The results of the analytic theory are compared with simulation results obtained by the direct simulation Monte Carlo (DSMC). The agreement between the theory and simulations is perfect. The reported results may have important consequences for fundamental science as well as for numerous application, e.g. for the experimental modelling in a lab of natural processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...