Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 758123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954757

RESUMO

Modularity at the head-neck junction of the femoral component in THA became popular as a design feature with advantages of decreasing implant inventory and allowing adjustment of leg length, offset, and soft tissue balancing through different head options. The introduction of a new modular interface to femoral stems that were previously monoblock, or nonmodular, comes with the potential for corrosion at the taper junction through mechanically assisted crevice corrosion. The incidence of revision hip arthroplasty is on the rise and along with improved wear properties of polyethylene and ceramic, use of larger femoral head sizes is becoming increasingly popular. Taper corrosion appears to be related to all of its geometric parameters, material combinations, and femoral head size. This review article discusses the pathogenesis, risk factors, clinical assessment, and management of taper corrosion at the head-neck junction.


Assuntos
Artroplastia de Quadril , Cabeça do Fêmur/metabolismo , Cabeça do Fêmur/patologia , Prótese de Quadril/efeitos adversos , Falha de Prótese , Corrosão , Feminino , Humanos , Masculino
2.
J Biomech ; 48(6): 976-83, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25721768

RESUMO

A three dimensional analytical approach was developed to determine the frictional moment vector generated by the relative sliding of the head-cup bearing couple of a total hip replacement. The frictional moment projection onto the femoral neck was also determined over the loading cycle. Predicted frictional moments for nine combinations of bearing materials and diameters were in close agreement with existing in vitro data. The analytical method was then applied to simplified gait (lubrication conditions of dry and serum), ISO standard gait and physiological level gait loading cycles. ISO standard gait had a total contact force of about two fold of physiological level gait and there was a corresponding increase in the maximum frictional torque on neck from 0.66×BW%m to 0.88×BW%m. For the ISO standard gait, the maximum frictional torque occurred at the same instance of maximum frictional moment and the maximum contact force. In contrast, for the physiological level gait, the frictional torque did not occur at the same instance as the peak load. This suggests that the neck frictional torque is a function of other parameters, such as angle between neck axis and frictional moment vector, as well as the magnitude of the contact force and frictional moment. The developed methodology was able to predict the maximum magnitude and change of directions of moments and the variation of torque at the head neck interface. The data will be useful for experimental studies assessing the fretting behaviour of the head neck junction, by providing appropriate loading data.


Assuntos
Artroplastia de Quadril , Fêmur/fisiologia , Modelos Teóricos , Fricção , Marcha/fisiologia , Humanos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...