Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 99: 78-85, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344525

RESUMO

New generation titanium alloys with low elastic moduli are promising materials for medical implants, particularly load-bearing orthopaedic implants. In this paper, the effect of niobium content on the microstructure and mechanical properties of new Ti alloys including Ti-23Nb-7Zr, Ti-28Nb-7Zr and Ti-33Nb-7Zr (wt%) is studied. Ti-23Nb-7Zr was found to mainly form α΄ and α″- phases, while both the Ti-28Nb-7Zr and Ti-33Nb-7Zr consisted of α″ and ß-phases with an increased amount of ß-phase in the alloy with 33 wt% of Nb. X-ray diffraction and microstructural analyses showed that the addition of Nb stabilises the ß-phase in the solution treated condition with the depleting amount of α΄ and α″- phases. The hardness and Young's modulus values were highest in Ti-23Nb-7Zr which is attributed to the high fraction of α΄- phase in this alloy. The Young's moduli achieved for the three alloys through nanoindentation were 35.9, 29.1 and 29.0 GPa, respectively. The new alloys are encouraging candidates for orthopaedic implants due to their low elastic modulus which can help inhibit stress shielding, although biocompatibility tests (in-vitro and in-vivo) are suggested for future work.


Assuntos
Ligas/química , Nióbio/química , Zircônio/química , Módulo de Elasticidade , Teste de Materiais , Ortopedia , Pressão , Próteses e Implantes , Desenho de Prótese , Difração de Raios X
2.
Med Eng Phys ; 61: 13-24, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146392

RESUMO

Visual scoring of damage at taper junctions is the sole method to quantify corrosion in large-scale retrieval studies of failed hip replacement implants. This study introduces an intelligent image analysis-based method that objectively rates corrosion at stem taper of retrieved hip implants according to the well-known Goldberg scoring method. A Support Vector Machine classifier was used that takes in vectors of global and local textural features and assigns scores to the corresponding images. Bayesian optimisation fine-tunes the hyperparameters of the classifier to minimise the cross-validation error.


Assuntos
Artroplastia de Quadril , Processamento de Imagem Assistida por Computador , Máquina de Vetores de Suporte , Corrosão
3.
J Mech Behav Biomed Mater ; 77: 164-170, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918008

RESUMO

A finite element model was developed to investigate the effect of loading regimes caused by various daily activities on the mechanical behaviour of the head-neck taper junction in modular hip replacements. The activities included stair up, stair down, sit to stand, stand to sit, one leg standing and knee bending. To present the real mechanical environment of the junction, in addition to the force components, the frictional moments produced by the frictional sliding of the head and cup were applied to a CoCr/CoCr junction having a 12/14 taper with a proximal mismatch angle of 0.024°. This study revealed that stair up with the highest fretting work per unit of length (1.62 × 104J/m) was the most critical activity, while knee bending and stand to sit with 1.96 × 103J/m were the least critical activities. For all the activities, the superolateral region of the neck was identified as the most critical region in terms of having larger values of fretting work per unit of area. This study showed also that the relative micro-motions and contact stresses occurring at the head-neck interface for all the studied activities are mostly in the range of 0-38µm and 0-350MPa, respectively. These ranges may be accordingly employed for conducting relevant in-vitro tests to more realistically represent the mechanical environment of taper junctions with the same materials and geometry studied in this work.


Assuntos
Artroplastia de Quadril , Cabeça do Fêmur/fisiologia , Prótese de Quadril , Teste de Materiais/métodos , Desenho de Prótese/métodos , Análise de Elementos Finitos , Fricção , Humanos , Pressão , Falha de Prótese , Resistência ao Cisalhamento , Estresse Mecânico
4.
J Mech Behav Biomed Mater ; 75: 470-476, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28823901

RESUMO

This paper investigates the mechanical response of a modular head-neck interface of hip joint implants under realistic loads of level walking. The realistic loads of the walking activity consist of three dimensional gait forces and the associated frictional moments. These forces and moments were extracted for a 32mm metal-on-metal bearing couple. A previously reported geometry of a modular CoCr/CoCr head-neck interface with a proximal contact was used for this investigation. An explicit finite element analysis was performed to investigate the interface mechanical responses. To study the level of contribution and also the effect of superposition of the load components, three different scenarios of loading were studied: gait forces only, frictional moments only, and combined gait forces and frictional moments. Stress field, micro-motions, shear stresses and fretting work at the contacting nodes of the interface were analysed. Gait forces only were found to significantly influence the mechanical environment of the head-neck interface by temporarily extending the contacting area (8.43% of initially non-contacting surface nodes temporarily came into contact), and therefore changing the stress field and resultant micro-motions during the gait cycle. The frictional moments only did not cause considerable changes in the mechanical response of the interface (only 0.27% of the non-contacting surface nodes temporarily came into contact). However, when superposed with the gait forces, the mechanical response of the interface, particularly micro-motions and fretting work, changed compared to the forces only case. The normal contact stresses and micro-motions obtained from this realistic load-controlled study were typically in the range of 0-275MPa and 0-38µm, respectively. These ranges were found comparable to previous experimental displacement-controlled pin/cylinder-on-disk fretting corrosion studies.


Assuntos
Prótese de Quadril , Desenho de Prótese , Caminhada , Artroplastia de Quadril , Fenômenos Biomecânicos , Análise de Elementos Finitos , Marcha , Humanos
5.
J Mech Behav Biomed Mater ; 75: 58-67, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28697400

RESUMO

An adaptive finite element simulation was developed to predict fretting wear in a head-neck taper junction of hip joint implant through a two dimensional (2D) model and based on the Archard wear equation. This model represents the most critical section of the head-neck junction which was identified from a 3D model of the junction subjected to one cycle of level gait loading. The 2D model was then used to investigate the effect of angular mismatch between the head and neck components on the material loss and fretting wear process over 4 million gait cycles of walking. Generally, junctions with distal angular mismatches showed a better resistance to fretting wear. The largest area loss in the neck after 4 million cycles of loading was 1.86E-02mm2 which was found in the junction with a proximal mismatch angle of 0.124°. While, the minimum lost area (4.30E-03mm2) was found in the junction with a distal angular mismatch of 0.024°. Contact stress, amplitude of sliding and contact length were found as the key parameters that can influence the amount of material loss and the process of fretting wear damage. These parameters vary over the fretting wear cycles and are highly dependent on the type and magnitude of the taper angle mismatch. This study also showed that lost area does not have a linear relationship with the mismatch angle of taper junctions.


Assuntos
Prótese de Quadril , Modelos Anatômicos , Desenho de Prótese , Artroplastia de Quadril , Cabeça do Fêmur , Análise de Elementos Finitos , Humanos , Falha de Prótese , Caminhada
6.
Mater Sci Eng C Mater Biol Appl ; 79: 390-398, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629033

RESUMO

A detailed investigation was performed to characterize the fretting wear and corrosion damage to the neck component of a CoCrMo stem from a metal-on-polyethylene implant retrieved after 99months. The stem was a low-carbon (0.07wt%) wrought Co-28Cr-6Mo alloy with no secondary carbide phases in the matrix (γ-phase). The original design of the neck surface contained an intentionally fabricated knurled profile with a valley-to-peak range of approximately 11µm. Roughness measurements indicated that the tip of the knurled profile was significantly damaged, especially in the distal medial region of the neck, with up to a 22% reduction in the mean peak-to-valley height (Ra) compared to the original profile. As a new finding, the channels between the peaks of the profile created an additional crevice site in the presence of stagnant body fluid within the head-neck taper junction. These channels were observed to contain the most severe corroded areas and surface oxide layers with micro-cracks. SEM/EDS, XRD and XPS evaluations identified the formation of Cr2O3 as a corrosion product. Also, decobaltification was found to occur in these corroded areas. The findings of this work indicate the important role of the knurled profile in inducing additional crevice corrosion.


Assuntos
Corrosão , Ligas , Artroplastia de Quadril , Prótese de Quadril , Polietileno , Estresse Mecânico
7.
J Mech Behav Biomed Mater ; 60: 118-126, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26807768

RESUMO

The assembly force is important in establishing the mechanical environment at the head-neck taper junction of modular hip replacements. Previous experimental results of the assembled taper junctions with different material combinations (Co-28Cr-6Mo and Ti-6Al-4V) reported similar axial strengths (pull-off loads), but lower torsional strengths (twist-off moments) for the CoCr/CoCr junction. However, mechanics of the junction and the strength behaviour have not been understood yet. A three dimensional finite element model of an isolated femoral head-neck junction was developed to explore the assembly and disassembly procedures, particularly the axial and torsional strengths for different material combinations and geometries. Under the same assembly load, the contacting length between the CoCr head and titanium neck was greater than that of in CoCr/CoCr. The contact length in the titanium neck was more sensitive to the assembly force when compared to the CoCr neck. For instance, with increasing the assembly force from 1890 to 3700N, the contact length increased by 88% for CoCr/Ti and 59% for CoCr/CoCr junctions. The torsional strength of the junction was related to the lateral deformation of the neck material due to the applied moment. The angular mismatch existing between the head and neck components was found to play the main role in the torsional strength of the junction. The smaller mismatch angle the higher torsional strength. It is suggested to consider reducing the mismatch angle, particularly in CoCr/CoCr junctions, and ensure a sufficiently high assembly force is applied by impaction for this combination.


Assuntos
Cabeça do Fêmur/fisiologia , Prótese de Quadril , Desenho de Prótese , Artroplastia de Quadril , Cromo , Cobalto , Análise de Elementos Finitos , Humanos , Titânio
8.
Materials (Basel) ; 9(3)2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-28773267

RESUMO

This paper aims to characterize the surface damage as a consequence of fretting fatigue in aluminum alloy 7075-T6 plates in double-lap bolted joints through XRD, surface profilometry, and SEM analyses. The main focus was on the surface roughness and chemical phase composition of the damaged zone along with the identification of fretting fatigue crack initiations over the surface of the material. The surface roughness of the fretted zone was found to increase when the joint was clamped with a higher tightening torque and tested under the same cyclic loading. Additionally, MgZn2 (η/ή) precipitates and ZnO phase were found to form onto the surface of uncoated aluminum plate in the fretted and worn zones. The formation of the ZnO phase was understood to be a result of frictional heat induced between the surface of contacting uncoated Al 7075-T6 plates during cyclic loading and exposure to the air. The beneficial role of electroless nickel-phosphorous (Ni-P) coatings in minimizing the fretting damage and thus improving the fretting fatigue life of the aluminum plates was also studied. The results showed that the surface roughness decreased by approximately 40% after applying Ni-P coatings to the Al 7075-T6 plates.

9.
Materials (Basel) ; 9(12)2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28774104

RESUMO

This study predicts the frictional moments at the head-cup interface and frictional torques and bending moments acting on the head-neck interface of a modular total hip replacement across a range of activities of daily living. The predicted moment and torque profiles are based on the kinematics of four patients and the implant characteristics of a metal-on-metal implant. Depending on the body weight and type of activity, the moments and torques had significant variations in both magnitude and direction over the activity cycles. For the nine investigated activities, the maximum magnitude of the frictional moment ranged from 2.6 to 7.1 Nm. The maximum magnitude of the torque acting on the head-neck interface ranged from 2.3 to 5.7 Nm. The bending moment acting on the head-neck interface varied from 7 to 21.6 Nm. One-leg-standing had the widest range of frictional torque on the head-neck interface (11 Nm) while normal walking had the smallest range (6.1 Nm). The widest range, together with the maximum magnitude of torque, bending moment, and frictional moment, occurred during one-leg-standing of the lightest patient. Most of the simulated activities resulted in frictional torques that were near the previously reported oxide layer depassivation threshold torque. The predicted bending moments were also found at a level believed to contribute to the oxide layer depassivation. The calculated magnitudes and directions of the moments, applied directly to the head-neck taper junction, provide realistic mechanical loading data for in vitro and computational studies on the mechanical behaviour and multi-axial fretting at the head-neck interface.

10.
Materials (Basel) ; 9(2)2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28787911

RESUMO

In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm) gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...