Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232004

RESUMO

Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.

2.
J Environ Sci (China) ; 24(6): 1142-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23505883

RESUMO

Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation. Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10, 70:30 and 50:50, respectively. The catalysts prepared in this study were characterized by using XRD, SEM, FT-IR and nitrogen sorption. The effects of solar irradiation, mass ratio of TiO2/FS composites, irradiation time and catalyst loadings were studied. Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation. However, further increasing fish scale content in the composites reduced the photocatalytic activity drastically. Under solar light irradiation, all the catalysts in this study exhibited photocatalytic activity, except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property. Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.


Assuntos
Compostos Azo/química , Corantes/química , Peixes , Pele , Titânio/química , Poluentes Químicos da Água/química , Animais , Compostos Azo/efeitos da radiação , Catálise , Corantes/efeitos da radiação , Microscopia Eletrônica de Varredura , Fotólise , Pele/ultraestrutura , Luz Solar , Titânio/efeitos da radiação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...