Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 135(4): 872-885, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535709

RESUMO

Patients with uncontrolled epilepsy experience repeated seizures putting them at increased risk for sudden unexpected death in epilepsy (SUDEP). Data from human patients have led to the hypothesis that SUDEP results from severe cardiorespiratory suppression after a seizure, which may involve pathological deficiencies in the brainstem serotonin (5-HT) system. Rats with a genomic Kcnj16 mutation (SSKcnj16-/- rats) are susceptible to sound-induced generalized tonic-clonic seizures (GTCS) which, when repeated once daily for up to 10 days (10-day seizure protocol), increased mortality, particularly in male rats. Here, we test the hypothesis that repeated seizures across the 10-day protocol will cause a progressive ventilatory dysfunction due to time-dependent 5-HT deficiency. Initial severe seizures led to ictal and postictal apneas and transient decreases in breathing frequency, ventilatory drive, breath-to-breath variability, and brief hypoventilation. These seizure-induced effects on ventilation were exacerbated with increasing seizures and ventilatory chemoreflexes became further impaired after repeated seizures. Tissue analyses of key brainstem regions controlling breathing showed time-dependent 5-HT system suppression and increased immunoreactivity for IBA-1 (microglial marker) without changes in overall cell counts at 3, 7, and 10 days of seizures. Fluoxetine treatment in SSKcnj16-/- rats prevented repeated seizure-induced progressive respiratory suppression but failed to prevent seizure-related mortality. We conclude that repeated seizures cause a progressive compromise of ventilatory control in the immediate postictal period largely mediated by serotonin system suppression in brainstem regions of respiratory control. However, other unknown factors contribute to overall survival following repeated seizures in this model.NEW & NOTEWORTHY This study demonstrated that repeated seizures in a novel rat model (SSKcnj16-/- rats) caused a progressively greater ventilatory dysfunction in the immediate postictal period associated with brainstem serotonin (5-HT) suppression. Augmenting brain 5-HT with a selective serotonin reuptake inhibitor prevented the progressive ventilatory dysfunction induced by repeated seizures but failed to prevent seizure-related mortality, suggesting that repeated seizures may lead to cardiorespiratory suppression and failure through multiple mechanisms.


Assuntos
Serotonina , Morte Súbita Inesperada na Epilepsia , Humanos , Masculino , Ratos , Animais , Eletroencefalografia/métodos , Morte Súbita/etiologia , Morte Súbita/prevenção & controle , Convulsões/complicações
2.
Int J Psychiatry Med ; 56(5): 374-384, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34313491

RESUMO

OBJECTIVE: As appointments become more rushed, it is crucial that primary care clinicians consider new and effective ways to provide preventive health education to patients. Currently, patient education is often handouts printed from the electronic medical record system; however, these pieces of paper often do not have the desired impact. Well-established advertising methods reveal that repeated exposure is key in recall and swaying consumer decisions. The Creating Health Education for Constructive Knowledge in Underserved Populations (CHECK UP) Program is a medical student-led program that aims to improve patient recall of health information, health promoting behaviors and health outcomes by applying modified advertising concepts to the delivery of health education. METHODS: Patients were given large magnets containing health education information. These patients were interviewed 3-4 months afterwards to assess use and effectiveness of magnets as a means to provide health education. RESULTS: In total, 25 of the 28 patients given CHECK UP magnets agreed to participate. The majority of participants (23/25) kept the magnets and reported that they, as well as others in their households, see the magnets daily. All 23 participants recalled at least 1 health tip from 1 of the magnets. CONCLUSIONS: The use of non-traditional materials for patient education allowed for repeated exposure and recall of health information. Consideration for modified use of evidence-based advertising and marketing strategies for the delivery of patient education may be an easy and effective way to provide information to patients outside of the clinical setting and promote health behavioral changes.


Assuntos
Promoção da Saúde , Educação de Pacientes como Assunto , Humanos , Atenção Primária à Saúde , Estudantes
3.
Nucleic Acids Res ; 48(5): 2473-2485, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970402

RESUMO

Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, accelerated aging and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and their protein products, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it was observed that CSA and CSB regulate transcription of ribosomal DNA (rDNA) genes and ribosome biogenesis. Here, we investigate the dysregulation of rRNA synthesis in CS. We report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate the binding of Ncl to rDNA and subsequent rRNA synthesis. CSB and CSA also increase RNA Polymerase I loading to the coding region of the rDNA and this is Ncl dependent. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. Most CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings provide novel insights into disease mechanism.


Assuntos
Síndrome de Cockayne/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular , DNA Ribossômico/genética , Humanos , Modelos Biológicos , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Nucleolina
4.
NPJ Aging Mech Dis ; 6: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934345

RESUMO

Age-related hearing loss (ARHL) is one of the most common disorders affecting elderly individuals. There is an urgent need for effective preventive measures for ARHL because none are currently available. Cockayne syndrome (CS) is a premature aging disease that presents with progressive hearing loss at a young age, but is otherwise similar to ARHL. There are two human genetic complementation groups of CS, A and B. While the clinical phenotypes in patients are similar, the proteins have very diverse functions, and insight into their convergence is of great interest. Here, we use mouse models for CS (CSA -/- and CSB m/m ) that recapitulate the hearing loss in human CS patients. We previously showed that NAD+, a key metabolite with various essential functions, is reduced in CS and associated with multiple CS phenotypes. In this study, we report that NAD+ levels are reduced in the cochlea of CSB m/m mice and that short-term treatment (10 days) with the NAD+ precursor nicotinamide riboside (NR), prevents hearing loss, restores outer hair cell loss, and improves cochlear health in CSB m/m mice. Similar, but more modest effects were observed in CSA -/- mice. Remarkably, we observed a reduction in synaptic ribbon counts in the presynaptic zones of inner hair cells in both CSA -/- and CSB m/m mice, pointing to a converging mechanism for cochlear defects in CS. Ribbon synapses facilitate rapid and sustained synaptic transmission over long periods of time. Ribeye, a core protein of synaptic ribbons, possesses an NAD(H) binding pocket which regulates its activity. Intriguingly, NAD+ supplementation rescues reduced synaptic ribbon formation in both CSA -/- and CSB m/m mutant cochleae. These findings provide valuable insight into the mechanism of CS- and ARHL-associated hearing loss, and suggest a possible intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...