Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fitoterapia ; 177: 106114, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971331

RESUMO

Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 µg/ml in Enterococcus faecalis to 500 µg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 µg/ml to 1000 µg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 µg/ml, 1 µg/ml, 2 µg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 µg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.

2.
Acta Chim Slov ; 70(1): 74-85, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005622

RESUMO

Two copper(II) complexes of 4-chloro- and 4-dimethylaminobenzaldehyde nicotinic acid hydrazones were prepared and characterized by elemental analysis, mass spectrometry, infrared and electron spectroscopy and conductometry. These rare examples of bis(hydrazonato)copper(II) complexes are neutral complex species with copper(II) center coordinated with two monoanionic bidentate O,N-donor hydrazone ligands coordinated in enol-imine form. The interaction of hydrazone ligands and corresponding copper(II) complexes with CT DNA and BSA was investigated. Copper(II) complexes are slightly effective in binding the DNA than pristine hydrazones. The results indicate groove binding or moderate intercalation which are not significantly affected by the nature of substituent at hydrazone ligands. On contrary, affinities of two copper(II) complexes toward BSA significantly differs and depends on the nature of the substituent, however in absence of thermodynamic data difference in nature of binding forces cannot be excluded. The complex bearing electron-withdrawing 4-chloro substituent has larger affinity toward BSA compared to 4-dimethyamino analogue. These findings were theoretically supported by molecular docking study.

3.
Acta Chim Slov ; 69(1): 243-250, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35298001

RESUMO

Two tetraketone derivatives, one previously reported and one novel, were synthesized, whose structures have been confirmed by elemental analyses, NMR, HPLC-MS, and IR spectroscopy. The crystal structures of synthesized tetraketones were determined using X-ray single-crystal diffraction. To analyze the molecular geometry and compare with experimentally obtained X-ray crystal data of synthesized compounds 1 (2,2'-((4-nitrophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione)) and 2 (2,2'-((4-hydroxy-3-methoxy-5-nitrophenyl)methylene)bis(5,5-dimethylcyclohexane-1,3-dione)), DFT calculations were performed with the standard 6-31G*(d), 6-31G**, and 6-31+G* basis sets. The calculated HOMO-LUMO energy gap for compound 1 was 4.60 eV and this value indicated that compound 1 is chemically more stable compared to compound 2 whose energy gap was 3.73 eV. Both compounds' calculated bond lengths and bond angles were in very good accordance to experimental values determined by X-ray single-crystal diffraction.


Assuntos
Teoria Quântica , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Metabolites ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36676983

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative haematological malignancy characterized by constitutive activation of BCR-ABL1 tyrosine kinase in the majority of patients. BCR-ABL1 expression activates signaling pathways involved in cell proliferation and survival. Current treatment options for CML include tyrosine kinase inhibitors (TKI) with resistance as a major issue. Various treatment options for overcoming resistance are being investigated. Among them, phytochemical curcumin could play an important role. Curcumin has been found to exhibit anti-cancerous effects in various models, including CML, through regulation of multiple molecular signaling pathways contributing to tumorigenesis. We have evaluated curcumin's effects on imatinib-sensitive LAMA84S and K562, as well as imatinib-resistant LAMA84R cell lines. Our results indicate a significant dose-dependent decrease in cell viability and proliferation of imatinib-sensitive and imatinib-resistant cell lines after curcumin treatment. Suppression of key signaling molecules regulating metabolic and proliferative events, such as Akt, P70S6K and NF-kB, was observed. Increased expression of caspase-3 suggests the potential pro-apoptotic effect of curcumin in the imatinib-resistant CML model. Additional in silico molecular docking studies revealed binding modes and affinities of curcumin with different targets and the results are in accordance with in vitro findings. Altogether, these results indicate the potential role of curcumin in the treatment of CML.

5.
Braz. J. Pharm. Sci. (Online) ; 58: e20013, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1394062

RESUMO

The aim of the present study is to improve the solubility and antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin by formulating its inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin in solution and in solid state. The phase solubility study was used to investigate the interactions between 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and 2-hydroxypropyl-ß-cyclodextrin and to estimate the molar ratio between them. The structural characterization of binary systems (prepared by physical mixing, kneading and solvent evaporation methods) was analysed using the FTIR-ATM spectroscopy. The antimicrobial activity of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin and inclusion complexes prepared by solvent evaporation method was tested by the diffusion and dilution methods on various strains of microorganisms. The results of phase solubility studies showed that 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin formed the inclusion complexes with 2-hydroxypropyl-ß-cyclodextrin of AP type. The solubility of 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin was increased 64.05-fold with 50% w/w of 2-hydroxypropyl-ß-cyclodextrin at 37 oC. The inclusion complexes in solid state, prepared by the solvent evaporation method, showed higher solubility in purified water and in phosphate buffer solutions in comparison with 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin alone. The inclusion complexes prepared by solvent evaporation method showed higher activity on Bacillus subtilis and Staphylococcus aureus compared to uncomplexed 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin due to improved aqueous solubility, thus increasing the amount of available 3-(3-(2-chlorophenyl)prop-2-enoyl)-4-hydroxycoumarin that crosses the bacterial membrane.


Assuntos
Solubilidade , Ciclodextrinas/agonistas , Anti-Infecciosos , Análise Espectral/instrumentação , Staphylococcus aureus/classificação , Bacillus subtilis/classificação , Espectroscopia de Infravermelho com Transformada de Fourier , Diluição
6.
J Biomol Struct Dyn ; 39(11): 4026-4036, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462973

RESUMO

Xanthene derivatives have become a group of molecules of great importance in discovering of new anticancer drugs. Recent studies of our group performed on xanthen-3-one and xanthen-1,8-dione derivatives have shown their antiproliferative activity on HeLa cervical cell lines. Obtained IC50 values together with calculated molecular descriptors were subjected to Quantitative Structure-Activity Relationship (QSAR) study in order to identify the most relevant molecular features responsible for the observed antiproliferative activity of compounds. Partial least square statistical method and the same training and test set were used to obtain statistical parameters for internal and external validation in 2D- and 3D-QSAR study. The obtained QSAR models have shown next results: 2D-QSAR: R2 = 0.741, Q2 = 0.792, R2pred = 0.875 and 3D-QSAR: R2 = 0.951, Q2 = 0.830, R2pred = 0.769. Based on the performed QSAR analysis and calculated ADMET properties, novel xanthene derivatives with enhanced antiproliferative activity were designed. Communicated by Ramaswamy H. Sarma.


Assuntos
Relação Quantitativa Estrutura-Atividade , Neoplasias do Colo do Útero , Feminino , Células HeLa , Humanos , Modelos Moleculares
7.
Acta Pharm ; 69(4): 683-694, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639090

RESUMO

Twelve previously synthesized, biologically active 2,6,7-trihydroxyxanthen-3-one derivatives were evaluated in vitro for antiproliferative activity. Compounds were screened against HeLa, SW620, HepG2 and A549 tumor cell lines. Compound with the trifluormethyl group on C-4' position of the phenyl ring showed the best inhibitory activity towards HeLa and A549 tumor cells with IC50 of 0.7 and 4.1 µmol L-1, resp. Compound with chlorine and fluorine substituents on aryl ring showed the best antiproliferative activity against SW620 with IC50 of 4.1 µmol L-1 and against HepG2 tumor cell line with IC50 of 4.2 µmol L-1. Analyses of cytotoxic and genotoxic potential of the trifluormethyl derivative were performed with cytokinesis-block micronucleus cytome assay in human lymphocyte culture and revealed no genotoxic and cytotoxic effects. The most potent compounds were subjected to molecular docking simulations in order to analyse bindings to molecular targets and, at the same time, further support the results of experimental cytotoxic tests. Docking studies showed sites of importance in forming hydrogen bonds of the most potent compounds with targets of interest.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mutagênicos/farmacologia , Células 3T3 , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Dano ao DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade
8.
Molecules ; 23(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545123

RESUMO

Thymoquinone (TQ), a natural compound with antimicrobial and antitumor activity, was used as the starting molecule for the preparation of 3-aminothymoquinone (ATQ) from which ten novel benzoxazole derivatives were prepared and characterized by elemental analysis, IR spectroscopy, mass spectrometry and NMR (¹H, 13C) spectroscopy in solution. The crystal structure of 4-methyl-2-phenyl-7-isopropyl-1,3-benzoxazole-5-ol (1a) has been determined by X-ray diffraction. All compounds were tested for their antibacterial, antifungal and antitumor activities. TQ and ATQ showed better antibacterial activity against tested Gram-positive and Gram-negative bacterial strains than benzoxazoles. ATQ had the most potent antifungal effect against Candida albicans, Saccharomyces cerevisiae and Aspergillus brasiliensis. Three benzoxazole derivatives and ATQ showed the highest antitumor activities. The most potent was 2-(4-fluorophenyl)-4-methyl-7-isopropyl-1,3-benzoxazole-5-ol (1f). Western blot analyses have shown that this compound inhibited phosphorylation of protein kinase B (Akt) and Insulin-like Growth Factor-1 Receptor (IGF1R ß) in HeLa and HepG2 cells. The least toxic compound against normal fibroblast cells, which maintains similar antitumor activities as TQ, was 2-(4-chlorophenyl)-4-methyl-7-isopropyl-1,3-benzoxazole-5-ol (1e). Docking studies indicated that 1e and 1f have significant effects against selected receptors playing important roles in tumour survival.


Assuntos
Benzoquinonas/química , Benzoxazóis , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoquinonas/síntese química , Benzoxazóis/síntese química , Benzoxazóis/metabolismo , Células HeLa , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular
9.
Molecules ; 18(5): 5104-24, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23644977

RESUMO

The efficient syntheses of 5-(2-hydroxyethyl)- and 5-(3-hydroxypropyl)-substituted pyrimidine derivatives bearing 2,3-dihydroxypropyl, acyclovir-, ganciclovir- and penciclovir-like side chains are reported. A synthetic approach that included the alkylation of an N-anionic-5-substituted pyrimidine intermediate (method A) provided the target acyclonucleosides in significantly higher overall yields in comparison to those obtained by method B using sylilation reaction. The phosphorylation assays of novel compounds as potential substrates for thymidine kinase of herpes simplex virus type 1 (HSV-1 TK) showed that solely pyrimidine 5-substituted acyclonucleosides with a penciclovir-like side chain acted as a fraudulent substrates of HSV-1 TK. Moreover, the uracil derivative with penciclovir-like side chain with less bulky 2-hydroxyethyl substituent at C-5 proved to be a better substrate than the corresponding one with a 3-hydroxypropyl substituent. Therefore, this acyclonucleoside was selected as a lead compound for the development of a positron emission tomography HSV-1 TK activity imaging agent.


Assuntos
Aciclovir/análogos & derivados , Antivirais , Ganciclovir , Herpesvirus Humano 1/enzimologia , Nucleosídeos de Pirimidina , Timidina Quinase/metabolismo , Aciclovir/síntese química , Aciclovir/química , Aciclovir/farmacologia , Linhagem Celular , Fibroblastos , Ganciclovir/síntese química , Ganciclovir/química , Ganciclovir/farmacologia , Guanina , Herpes Simples/diagnóstico por imagem , Herpes Simples/enzimologia , Humanos , Tomografia por Emissão de Pósitrons/métodos , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...