Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 186(1): 581-598, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33619553

RESUMO

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.


Assuntos
Glycine max/genética , Proteínas de Membrana Transportadoras/genética , Fixação de Nitrogênio , Proteínas de Plantas/genética , Rhizobium/fisiologia , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Glycine max/microbiologia , Simbiose
2.
Plant Physiol ; 181(1): 332-352, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262954

RESUMO

Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Acetil-CoA Carboxilase/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Redes Reguladoras de Genes , Fosfatos/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Domínios Proteicos , Transdução de Sinais , Fatores de Transcrição/genética
3.
Genet Mol Biol ; 35(1 (suppl)): 233-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22802709

RESUMO

Environmental stresses caused by either abiotic or biotic factors greatly affect agriculture. As for soybean [Glycine max (L.) Merril], one of the most important crop species in the world, the situation is not different. In order to deal with these stresses, plants have evolved a variety of sophisticated molecular mechanisms, to which the transcriptional regulation of target-genes by transcription factors is crucial. Even though the involvement of several transcription factor families has been widely reported in stress response, there still is a lot to be uncovered, especially in soybean. Therefore, the objective of this study was to investigate the role of bHLH and trihelix-GT transcription factors in soybean responses to environmental stresses. Gene annotation, data mining for stress response, and phylogenetic analysis of members from both families are presented herein. At least 45 bHLH (from subgroup 25) and 63 trihelix-GT putative genes reside in the soybean genome. Among them, at least 14 bHLH and 11 trihelix-GT seem to be involved in responses to abiotic/biotic stresses. Phylogenetic analysis successfully clustered these with members from other plant species. Nevertheless, bHLH and trihelix-GT genes encompass almost three times more members in soybean than in Arabidopsis or rice, with many of these grouping into new clades with no apparent near orthologs in the other analyzed species. Our results represent an important step towards unraveling the functional roles of plant bHLH and trihelix-GT transcription factors in response to environmental cues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...