Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(5): 1124-1135, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37144894

RESUMO

The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation. Small molecules that inhibit the Hsp70 family of chaperones have been shown to reduce the accumulation of tau, including phosphorylated tau. Here, eight analogs of the rhodacyanine inhibitor, JG-98, were synthesized and evaluated. Like JG-98, many of the compounds inhibited ATPase activity of the cytosolic heat shock cognate 70 protein (Hsc70) and reduced total, aggregated, and phosphorylated tau accumulation in cultured cells. Three compounds, representing divergent clogP values, were evaluated for in vivo blood-brain barrier penetration and tau reduction in an ex vivo brain slice model. AL69, the compound with the lowest clogP and the lowest membrane retention in a parallel artificial membrane permeability assay (PAMPA), reduced phosphorylated tau accumulation. Our results suggest that benzothiazole substitutions of JG-98 that increase hydrophilicity may increase the efficacy of these Hsp70 inhibitors to reduce phosphorylated tau.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzotiazóis/farmacologia , Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas tau/metabolismo , Tauopatias/metabolismo
2.
Protein Sci ; 31(11): e4448, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305768

RESUMO

Tauopathies, such as Alzheimer's disease, are characterized by the misfolding and progressive accumulation of the microtubule associated protein tau. Chaperones, tasked with maintaining protein homeostasis, can become imbalanced with age and contribute to the progression of neurodegenerative disease. Cyclophilins are a promising pool of underinvestigated chaperones with peptidyl-prolyl isomerase activity that may play protective roles in regulating tau aggregation. Using a Thioflavin T fluorescence-based assay to monitor in vitro tau aggregation, all eight cyclophilins, which include PPIA to PPIH prevent tau aggregation, with PPIB, PPIC, PPID, and PPIH showing the greatest inhibition. The low thermal stability of PPID and the strong heparin binding of PPIB undermines the simplistic interpretation of reduced tau aggregation. In a cellular model of tau accumulation, all cyclophilins, except PPID and PPIH, reduce insoluble tau. PPIB, PPIC, PPIE, and PPIF also reduce soluble tau levels with PPIC exclusively protecting cells from tau seeding. Overall, this study demonstrates cyclophilins prevent tau fibril formation and many reduce cellular insoluble tau accumulation with PPIC having the greatest potential as a molecular tool to mitigate tau seeding and accumulation.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Ciclofilinas/química , Ciclofilinas/metabolismo , Proteínas tau/metabolismo , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Doença de Alzheimer/metabolismo
3.
Sci Rep ; 7(1): 13432, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044148

RESUMO

Agmatine N-acetyltransferase (AgmNAT) catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine. Herein, we provide evidence that Drosophila melanogaster AgmNAT (CG15766) catalyzes the formation of N-acetylagmatine using an ordered sequential mechanism; acetyl-CoA binds prior to agmatine to generate an AgmNAT•acetyl-CoA•agmatine ternary complex prior to catalysis. Additionally, we solved a crystal structure for the apo form of AgmNAT with an atomic resolution of 2.3 Å, which points towards specific amino acids that may function in catalysis or active site formation. Using the crystal structure, primary sequence alignment, pH-activity profiles, and site-directed mutagenesis, we evaluated a series of active site amino acids in order to assign their functional roles in AgmNAT. More specifically, pH-activity profiles identified at least one catalytically important, ionizable group with an apparent pKa of ~7.5, which corresponds to the general base in catalysis, Glu-34. Moreover, these data led to a proposed chemical mechanism, which is consistent with the structure and our biochemical analysis of AgmNAT.


Assuntos
Acetiltransferases/química , Agmatina/análogos & derivados , Agmatina/metabolismo , Proteínas de Drosophila/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Substituição de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster
4.
Insect Biochem Mol Biol ; 66: 1-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26476413

RESUMO

Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.


Assuntos
Aciltransferases/metabolismo , Aminoácidos/química , Proteínas de Drosophila/química , Drosophila melanogaster/enzimologia , Acetilcoenzima A/metabolismo , Aminoácidos/metabolismo , Animais , Catálise , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Tiramina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...