Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 676249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093499

RESUMO

Vibrio vulnificus and V. parahaemolyticus, found naturally in marine and estuarine environments, are the leading cause of seafood associated gastrointestinal illness and death. Consumption of improperly cooked crabs and handling of live crabs are potential routes of exposure to pathogenic bacteria such as V. vulnificus and V. parahaemolyticus. Little information is available on serotype genetic and antimicrobial profiles of V. vulnificus and V. parahaemolyticus recovered from Maryland estuaries. The aim of the present study was to determine the serotype of V. parahaemolyticus, evaluate antimicrobial susceptibility and genetic profiles of V. vulnificus and V. parahaemolyticus isolated from water and blue crab (Callinectes sapidus) samples collected from the Maryland Coastal Bays. One hundred and fifty (150) PCR confirmed V. parahaemolyticus including 52 tdh + (pathogenic) and 129 V. vulnificus strains were tested for susceptibility to twenty (20) different antibiotics chosen by clinical usage for Vibrio species. The O serogroups were determined using an agglutination test with V. parahaemolyticus antisera. Pulsed-field gel electrophoresis (PFGE) was used for molecular subtyping to investigate the genetic diversity among tested strains. The most prevalent serotypes were O5 (33.3%), O3 (18.7%) and O1 (14.7%). More than 41% of all tested Vibrio isolates were resistant to three or more antibiotics. Cephalothin showed the highest resistance (42% and 61%), followed by cefoxitin (42% and 31%) and ceftazidime (36% and 29%) for V. vulnificus and V. parahaemolyticus, respectively. Most strains (99-100%) were susceptible to ampicillin/sulbactam, levofloxacin, piperacillin, piperacillin/tazobactam, and tetracycline. Fifty percent (50%) of the cephalothin resistant strains were crab isolates. Vibrio vulnificus and V. parahaemolyticus isolates demonstrated a high genetic diversity and 31% of V. vulnificus and 16% of V. parahaemolyticus strains were PFGE untypeable. No correlations were found between the V. parahaemolyticus serotype, pathogenicity, genetic and antimicrobial resistance profiles of both species of Vibrio. The observed high multiple drug resistance of V. vulnificus and V. parahaemolyticus from blue crab and its environment is of public health concern. Therefore, there is a need for frequent antibiotic sensitivity surveillance for Vibrio spp.

2.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978135

RESUMO

Oyster and seawater samples were collected from five sites in the Chesapeake Bay, MD, and three sites in the Delaware Bay, DE, from May to October 2016 and 2017. Abundances and detection frequencies for total and pathogenic Vibrio parahaemolyticus and Vibrio vulnificus were compared using the standard most-probable-number-PCR (MPN-PCR) assay and a direct-plating (DP) method on CHROMagar Vibrio for total (tlh+ ) and pathogenic (tdh+ and trh+ ) V. parahaemolyticus genes and total (vvhA) and pathogenic (vcgC) V. vulnificus genes. The colony overlay procedure for peptidases (COPP) assay was evaluated for total Vibrionaceae DP had high false-negative rates (14 to 77%) for most PCR targets and was deemed unsatisfactory. Logistic regression models of the COPP assay showed high concordances with MPN-PCR for tdh+ and trh+V. parahaemolyticus and vvhA+V. vulnificus in oysters (85.7 to 90.9%) and seawater (81.1 to 92.7%) when seawater temperature and salinity were factored into the model, suggesting that the COPP assay could potentially serve as a more rapid method to detect vibrios in oysters and seawater. Differences in total Vibrionaceae and pathogenic Vibrio abundances between state sampling sites over different collection years were contrasted for oysters and seawater by MPN-PCR. Abundances of tdh+ and trh+V. parahaemolyticus were ∼8-fold higher in Delaware oysters than in Maryland oysters, whereas abundances of vcgC+V. vulnificus were nearly identical. For Delaware oysters, 93.5% were both tdh+ and trh+, compared to only 19.2% in Maryland. These results indicate that pathogenic V. parahaemolyticus was more prevalent in the Delaware Bay than in the Chesapeake Bay.IMPORTANCE While V. parahaemolyticus and V. vulnificus cause shellfish-associated morbidity and mortality among shellfish consumers, current regulatory assays for vibrios are complex, time-consuming, labor-intensive, and relatively expensive. In this study, the rapid, simple, and inexpensive COPP assay was identified as a possible alternative to MPN-PCR for shellfish monitoring. This paper shows differences in total Vibrionaceae and pathogenic vibrios found in seawater and oysters from the commercially important Delaware and Chesapeake Bays. Vibrio parahaemolyticus isolates from the Delaware Bay were more likely to contain commonly recognized pathogenicity genes than those from the Chesapeake Bay.


Assuntos
Baías/microbiologia , Ostreidae/microbiologia , Água do Mar/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/isolamento & purificação , Animais , Contagem de Colônia Microbiana , Delaware , Geografia , Maryland , Estações do Ano , Vibrio parahaemolyticus/classificação , Vibrio vulnificus/classificação
3.
Int J Food Microbiol ; 318: 108467, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31835094

RESUMO

The present study compared different concentrations of propidium monoazide (PMA), time of exposure to light and different light intensities to determine the optimal conditions for the quantification of viable Escherichia coli in cell suspension and in food matrix. The influence of cell density and the effectiveness of PMA in viable but non-culturable (VBNC) E. coli cells were evaluated and also applied in food matrix. For that purpose, different concentrations of PMA (20 µM, 40 µM, 50 µM, 60 µM and 80 µM) under different times of exposure (5 min, 10 min, 15 min, 20 min and 30 min) to lights of different intensities (500 W and 650 W) were evaluated. After determining the optimal conditions, the PMA-qPCR methods were applied to different compositions of live and heat-killed E. coli suspensions (v:v; 0:1; 1:0; 1:1) in concentrations ranging from 3 Log to 7 Log CFU/mL. The same dilutions were prepared with E. coli in VBNC state and applied in food matrix. The results obtained from qPCR, PMA-qPCR and plate counts were compared. The results suggested that a PMA treatment of 50 µM PMA for 15 min under 650 W light intensity was optimal under our conditions. For E. coli cell suspensions, the amplification of heat-killed cells was inhibited greatly by PMA when concentrations were ≤ 5 Log CFU/mL. For the samples of oyster inoculated with heat-killed cells, E. coli was not detected by PMA-qPCR in concentrations ≤4 Log CFU/g. Regarding the results with VBNC state, we considered the PMA-qPCR method to be applicable for enumerating E. coli VBNC cells in oyster samples. Based on our findings, we further recommend the use of PMA-qPCR with the aim of reducing the amplification of dead cells for improving its performance, since false-positives could still occur depending on the level of E. coli in the sample. The application of the PMA-qPCR for quantification of bacteria, compared to the use of culture-dependent methods, is quite promising. However, further studies are recommended, especially using different food matrices.


Assuntos
Escherichia coli/isolamento & purificação , Microbiologia de Alimentos/métodos , Alimentos Marinhos/microbiologia , Azidas/química , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Indicadores e Reagentes/química , Viabilidade Microbiana , Propídio/análogos & derivados , Propídio/química , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Microbiologyopen ; 8(5): e00738, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30311420

RESUMO

The aim of this study was to determine the serogroups, antimicrobial resistance and genetic diversity of Escherichia coli isolates from samples of bivalve mollusks collected along Santa Catarina coast, Brazil, and from the Chesapeake Bay, Maryland, USA. One hundred forty-one E. coli isolates were characterized for serogroups with 181 specific O antisera and antimicrobial susceptibility using the disk diffusion method. The genetic diversity was assessed using pulsed-field gel electrophoresis (PFGE). The results showed that among the isolates, 19.9% were classified as multi-drug resistant (MDR) and resistance was most frequently observed to cephalothin, nitrofurantoin, and ampicillin. The predominant serogroups were O6, O8, and O38. Some serogroups were recognized as pathogenic E. coli. PFGE dendrograms indicated extensive genetic diversity among the isolates. Although characteristics of the E. coli isolates were highly variable, it is important to note that E. coli belonging to pathogenic serogroups and MDR isolates are present in mollusks of both study areas. This is the first report on the phenotypic and genotypic characterization of E. coli from mollusks from Santa Catarina and the Chesapeake Bay that should encourage studies focusing on comparison of isolates across countries.


Assuntos
Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Genótipo , Moluscos/microbiologia , Fenótipo , Animais , Brasil , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Escherichia coli/fisiologia , Variação Genética , Técnicas de Genotipagem , Maryland , Testes de Sensibilidade Microbiana , Sorotipagem
5.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150510

RESUMO

Vibrio parahaemolyticus and Vibrio vulnificus are naturally occurring estuarine bacteria and are the leading causes of seafood-associated infections and mortality in the United States. Though multiple-antibiotic-resistant V. parahaemolyticus and V. vulnificus strains have been reported, resistance patterns in vibrios are not as well documented as those of other foodborne bacterial pathogens. Salinity relaying (SR) is a postharvest processing (PHP) treatment to reduce the abundances of these pathogens in shellfish harvested during the warmer months. The purpose of this study was to evaluate the antimicrobial susceptibility (AMS), pathogenicity, and genetic profiles of V. parahaemolyticus and V. vulnificus recovered from oysters during an oyster relay study. Isolates (V. parahaemolyticus [n = 296] and V. vulnificus [n = 94]) were recovered from oysters before and during the 21-day relaying study to detect virulence genes (tdh and trh) and genes correlated with virulence (vcgC) using multiplex quantitative PCR (qPCR). AMS to 20 different antibiotics was investigated using microbroth dilution, and pulsed-field gel electrophoresis (PFGE) was used to study the genetic profiles of the isolates. Twenty percent of V. vulnificus isolates were vcgC+, while 1 and 2% of V. parahaemolyticus were tdh+ and trh+, respectively. More than 77% of the V. vulnificus isolates and 30% of the V. parahaemolyticus isolates were resistant to at least one antimicrobial. Forty-eight percent of V. vulnificus and 8% of V. parahaemolyticus isolates were resistant to two or more antimicrobials. All isolates demonstrated a high genetic diversity, even among those isolated from the same site and having a similar AMS profile. No significant effects of the relaying process on AMS, virulence genes, or PFGE profiles of V. vulnificus and V. parahaemolyticus were observed.IMPORTANCE Analysis of the antibiotic resistance profiles of V. vulnificus and V. parahaemolyticus isolated from oysters during this study indicated that more than 48% of V. vulnificus isolates were resistant to two or more antimicrobials, including those recommended by the CDC for treating Vibrio infections. Also, the V. parahaemolyticus isolates showed high MICs for some of the Vibrio infection treatment antibiotics. Monitoring of AMS profiles of this bacterium is important to ensure optimal treatment of infections and improve food safety. Our study showed no significant differences in the AMS profiles of V. vulnificus (P = 0.26) and V. parahaemolyticus (P = 0.23) isolated from the oysters collected before versus after relaying. This suggests that the salinity of the relaying sites did not affect the AMS profiles of the Vibrio isolates, although it did reduce the numbers of these bacteria in oysters (S. Parveen et al., J Food Sci 82:484-491, 2017, https://doi.org/10.1111/1750-3841.13584).


Assuntos
Ostreidae/microbiologia , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Manipulação de Alimentos/métodos , Inocuidade dos Alimentos , Variação Genética , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Salinidade , Vibrioses/microbiologia , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/efeitos dos fármacos , Vibrio vulnificus/isolamento & purificação , Virulência/genética
6.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751404

RESUMO

In this study, we used 16S rRNA gene amplicons to describe the bacterial microbiota associated with oysters (Crassostrea virginica) and seawater collected from two sites in the Chesapeake Bay. The dominant bacterial groups included those belonging to the order Pelagibacteraceae, family Enterobacteriaceae, and genus Synechococcus The microbiomes varied among oysters from the same site and between the two sites and months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...