Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys D Appl Phys ; 53(16): 164003, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191951

RESUMO

Probing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy. Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of more than 1 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01-1 µm. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.

2.
Small ; 12(27): 3651-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27171620

RESUMO

Porous materials, due to their large surface-to-volume ratio, are important for a broad range of applications and are the subject of intense research. Most studies investigate the bulk properties of these materials, which are not sensitive to the effect of heterogeneities within the sample. Herein, a new strategy based on correlative fluorescence lifetime imaging and scanning electron microscopy is presented that allows the detection and localization of those heterogeneities, and connects them to morphological and structural features of the material. By applying this method to a dye-modified metal-organic framework (MOF), two independent fluorescence quenching mechanisms in the MOF scaffold are identified and quantified. The first mechanism is based on quenching via amino groups, while the second mechanism is influenced by morphology. Furthermore, a similar correlation between the inherent luminescence lifetime and the morphology of the unmodified MOF structure is demonstrated.

3.
J Med Chem ; 57(8): 3314-23, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24697311

RESUMO

Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.


Assuntos
Piperazinas/síntese química , Receptores sigma/metabolismo , Animais , Citometria de Fluxo , Fluorescência , Cobaias , Humanos , Ligantes , Células MCF-7 , Masculino , Piperazinas/metabolismo , Ratos
4.
Nat Chem Biol ; 10(5): 350-357, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681536

RESUMO

Here we combined classical biochemistry with new biophysical approaches to study the organization of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) with high spatial and temporal resolution at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, after sorting in the Golgi, each GPI-AP reaches the apical surface in homoclusters. Golgi-derived homoclusters are required for their subsequent plasma membrane organization into cholesterol-dependent heteroclusters. By contrast, in nonpolarized MDCK cells, GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form heteroclusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, in contrast to fibroblasts, in polarized epithelial cells, a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and function of GPI-APs at the apical surface.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , Animais , Células CHO , Linhagem Celular , Colesterol/metabolismo , Cricetinae , Cricetulus , Cães , Proteínas de Fluorescência Verde/metabolismo
5.
Biophys J ; 98(12): 3078-85, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20550921

RESUMO

Protein aggregation is a hallmark of several neurodegenerative diseases including Huntington's disease. We describe the use of the recently developed number and brightness method (N&B) that uses confocal images to monitor aggregation of Huntingtin exon 1 protein (Httex1p) directly in living cells. N&B measures the molecular brightness of protein aggregates in the entire cell noninvasively based on intensity fluctuations at each pixel in an image. N&B applied to mutant Httex1p in living cells showed a two-step pathway leading to inclusion formation that is polyQ length dependent and involves four phases. An initial phase of monomer accumulation is followed by formation of small oligomers (5-15 proteins); as protein concentration increases, an inclusion is seeded and forms in the cytoplasm; the growing inclusion recruits most of the Httex1p and depletes the cell leaving only a low concentration of monomers. The behavior of Httex1p in COS-7 and ST14A cells is compared.


Assuntos
Imagem Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Animais , Células COS , Calibragem , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína Huntingtina , Microscopia Confocal , Proteínas Nucleares , Peptídeos/metabolismo , Estrutura Quaternária de Proteína , Ratos
6.
Biochim Biophys Acta ; 1798(7): 1399-408, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20347719

RESUMO

Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.


Assuntos
Apolipoproteína A-I/química , Membrana Celular/química , Bicamadas Lipídicas/química , Lipoproteínas HDL/química , Modelos Químicos , Lipossomas Unilamelares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animais , Apolipoproteína A-I/metabolismo , Membrana Celular/metabolismo , Humanos , Lauratos/química , Bicamadas Lipídicas/metabolismo , Lipoproteínas HDL/metabolismo , Fluidez de Membrana , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Biológicos , Ligação Proteica , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...