Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(22): 227402, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26196644

RESUMO

We report on the observation of macroscopic free exciton photoluminescence (PL) rings that appear in spatially resolved PL images obtained on a high purity GaAs sample. We demonstrate that a spatial temperature gradient in the photocarrier system, which is due to nonresonant optical excitation, locally modifies the population balance between free excitons and the uncorrelated electron-hole plasma described by the Saha equation and accounts for the experimentally observed nontrivial PL profiles. The exciton ring formation is a particularly instructive manifestation of the spatially dependent thermodynamics of a partially ionized exciton gas in a bulk semiconductor.

2.
Rev Sci Instrum ; 84(12): 123903, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387442

RESUMO

We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

3.
Phys Rev Lett ; 106(3): 037204, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405292

RESUMO

Magnetization of ferromagnetic materials commonly occurs via random jumps of domain walls between pinning sites, a phenomenon known as the Barkhausen effect. Using strongly focused light pulses of appropriate power and duration we demonstrate the ability to selectively activate single jumps in the domain wall propagation in (Ga,Mn)As, manifesting itself as a discrete photoinduced domain wall creep as a function of illumination time. The propagation velocity can be increased over 7 orders of magnitude varying the illumination power density and the magnetic field.

4.
Phys Rev Lett ; 102(18): 187401, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19518911

RESUMO

We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.

5.
Phys Rev Lett ; 101(7): 076602, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18764562

RESUMO

We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.

6.
Phys Rev Lett ; 99(1): 016601, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678176

RESUMO

We study exciton spin decay in the regime of strong electron-hole exchange interaction, which occurs in a wide variety of semiconductor nanostructures. In this regime the electron spin precession is restricted within a sector formed by the external magnetic field and the effective exchange fields triggered by random spin flips of the hole. Using Hanle effect measurements, we demonstrate that this mechanism dominates our experiments in CdTe/(Cd,Mg)Te quantum wells. We present calculations that provide a consistent description of the experimental results, which is supported by independent measurements of the parameters entering the model.

7.
Phys Rev Lett ; 96(2): 027402, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16486639

RESUMO

We report circular-to-linear and linear-to-circular conversion of optical polarization by semiconductor quantum dots. The polarization conversion occurs under continuous wave excitation in the absence of any magnetic field. The effect originates from quantum interference of linearly and circularly polarized photon states, induced by the natural anisotropic shape of the self-assembled dots. The behavior can be qualitatively explained in terms of a pseudospin formalism.

8.
Phys Rev Lett ; 94(22): 227203, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16090433

RESUMO

Giant magnetic linear dichroism (MLD) is observed in the ferromagnetic semiconductor Ga(0.98)Mn(0.02)As. The contribution to this effect induced by the spontaneous magnetization can be clearly identified by azimuthal dependencies. The spectral dependence of the effect in the range from 1.4 to 2.4 eV shows that the MLD induced by the spontaneous magnetization is strongly enhanced for excitations from the electronic states that are responsible for the ferromagnetism in this material. This spectral sensitivity and the size of the effect makes MLD a powerful tool for the study of (III, Mn)V alloys and similar novel ferromagnetic semiconductors.

9.
Phys Rev Lett ; 92(23): 237203, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15245193

RESUMO

Static and time-resolved magneto-optical spectra of the ferromagnetic semiconductor (Ga,Mn)As show that a pulsed photoexcitation with a fluence of 10 microJ/cm(2) is equivalent to the application of an external magnetic field of about 1 mT, which relaxes with a decay time of 30 ps. This relaxation is attributed to the spin relaxation of electrons in the conduction band and is found to be not affected by interactions with Mn ions.

10.
Phys Rev Lett ; 88(25 Pt 1): 257401, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12097127

RESUMO

Circularly and linearly polarized radiation due to spatially indirect optical transitions is studied in semimagnetic (Zn,Mn)Se/BeTe and nonmagnetic ZnSe/BeTe quantum-well structures with a type-II band alignment. Because of the giant in-plane anisotropy of the optical matrix elements related to a particular interface, complete spin orientation of photocarriers induced by magnetic fields leads not to purely circular but instead to elliptical polarization of the luminescence. From comparison between theory and experiment the parameter of optical anisotropy of a ZnSe/BeTe interface is evaluated. The developed theoretical approach can be applied for the large class of nanostructures revealing optical anisotropy.

16.
Phys Rev B Condens Matter ; 49(15): 10248-10258, 1994 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10009845
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...