Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 20(6): 985-1004, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35768972

RESUMO

Rainwater pollution in urban areas is a real phenomenon globally, particularly in developing countries. This study aims to trace the origin of polycyclic aromatic hydrocarbons (PAHs) in the Abidjan district's rainwater and to evaluate the health risk to the population. Ten water samples were collected at two sites during the dry and rainy seasons over a 2-year period. The use of molecular indices and profiles as well as Spearman's correlation matrix revealed that the pyrolytic sources, such as wood combustion as well as road traffic, remain the main sources of these pollutants in the water. The risk assessment revealed a higher risk of skin cancer in children.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Criança , China , Côte d'Ivoire , Monitoramento Ambiental , Poluição Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Água
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558224

RESUMO

Socioeconomic development in low- and middle-income countries has been accompanied by increased emissions of air pollutants, such as nitrogen oxides [NOx: nitrogen dioxide (NO2) + nitric oxide (NO)], which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, landscape biomass burning-another important NOx source-has declined in north equatorial Africa, attributed to changes in climate and anthropogenic fire management. Here, we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs-home to hundreds of millions of people-mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the dry season of November through February. Reductions in burned area explained the majority of variation in NO2 VCDs, though changes in fossil fuel emissions also explained some variation. Over Africa's biomass burning regions, raising mean GDP density (USD⋅km-2) above its lowest levels is associated with lower NO2 VCDs during the dry season, suggesting that economic development mitigates net NO2 emissions during these highly polluted months. In contrast to the traditional notion that socioeconomic development increases air pollutant concentrations in low- and middle-income nations, our results suggest that countries in Africa's northern biomass-burning region are following a different pathway during the fire season, resulting in potential air quality benefits. However, these benefits may be lost with increasing fossil fuel use and are absent during the rainy season.


Assuntos
Atmosfera/química , Combustíveis Fósseis/estatística & dados numéricos , Óxido Nítrico/análise , África Central , Poluição do Ar/estatística & dados numéricos , Biomassa , Combustíveis Fósseis/efeitos adversos , Óxido Nítrico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...